846 resultados para image processing and analysis
Resumo:
Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.
Resumo:
The objective of the present study, developed in a mountainous region in Brazil where many landslides occur, is to present a method for detecting landslide scars that couples image processing techniques with spatial analysis tools. An IKONOS image was initially segmented, and then classified through a Batthacharrya classifier, with an acceptance limit of 99%, resulting in 216 polygons identified with a spectral response similar to landslide scars. After making use of some spatial analysis tools that took into account a susceptibility map, a map of local drainage channels and highways, and the maximum expected size of scars in the study area, some features misinterpreted as scars were excluded. The 43 resulting features were then compared with visually interpreted landslide scars and field observations. The proposed method can be reproduced and enhanced by adding filtering criteria and was able to find new scars on the image, with a final error rate of 2.3%.
Resumo:
Analisi strutturale dell’ala di un UAV (velivolo senza pilota a bordo), sviluppata usando varie metodologie: misurazioni sperimentali statiche e dinamiche, e simulazioni numeriche con l’utilizzo di programmi agli elementi finiti. L’analisi statica è stata a sua volta portata avanti seguendo due differenti metodi: la classica e diretta determinazione degli spostamenti mediante l’utilizzo di un catetometro e un metodo visivo, basato sull’elaborazione di immagini e sviluppato appositamente a tale scopo in ambiente Matlab. Oltre a ciò è stata svolta anche una analisi FEM volta a valutare l’errore che si ottiene affrontando il problema con uno studio numerico. Su tale modello FEM è stata svolta anche una analisi di tipo dinamico con lo scopo di confrontare tali dati con i dati derivanti da un test dinamico sperimentale per ottenere informazioni utili per una seguente possibile analisi aeroelastica.
Resumo:
Jet impingement erosion test rig has been used to erode titanium alloy specimens (Ti-4Al-4V). Eroded surface profiles have been obtained by vertical sectioning method for light microscopy observation. Mixed fractals have been measured from profile images by a digital image processing and analysis technique. The use of this technique allows glimpsing a quantitative correlation among material properties, fractal surface topography and erosion phenomena. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A digital image processing and analysis method has been developed to classify shape and evaluate size and morphology parameters of corrosion pits. This method seems to be effective to analyze surfaces with low or high degree of pitting formation. Theoretical geometry data have been compared against experimental data obtained for titanium and aluminum alloys subjected to different corrosion tests. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (SBE-035437, DEG-0221680); Office of Naval Research (N00014-01-1-0624)
Resumo:
The purpose of this study was to investigate the occupational hazards within the tanning industry caused by contaminated dust. A qualitative assessment of the risk of human exposure to dust was made throughout a commercial Kenyan tannery. Using this information, high-risk points in the processing line were identified and dust sampling regimes developed. An optical set-up using microscopy and digital imaging techniques was used to determine dust particle numbers and size distributions. The results showed that chemical handling was the most hazardous (12 mg m(-3)). A Monte Carlo method was used to estimate the concentration of the dust in the air throughout the tannery during an 8 h working day. This showed that the high-risk area of the tannery was associated with mean concentrations of dust greater than the UK Statutory Instrument 2002 No. 2677. stipulated limits (exceeding 10 mg m(-3) (Inhalable dust limits) and 4 mg m(-3) (Respirable dust limits). This therefore has implications in terms of provision of personal protective equipment (PPE) to the tannery workers for the mitigation of occupational risk.
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
An automatic image processing and analysis technique has been developed for quantitative characterization of multi-phase materials. For the development of this technique is used the Khoros system that offers the basic morphological tools and a flexible, visual programming language. These techniques are implemented in a highly user oriented image processing environment that allows the user to adapt each step of the processing to his special requirements.To illustrate the implementation and performance of this technique, images of two different materials are processed for microstructure characterization. The result is presented through the determination of volume fraction of the different phases or precipitates.