914 resultados para hyperbranched poly-l-lysine
Resumo:
Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.
Resumo:
Hyperbranched poly(amido amine)s containing vinyl and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3-amino-1,2-propanediol (APD) with equal molar ratio in feed. H-1, C-13 and HSQC NMR techniques were used to clarify the structure of hyperbranched polymers and polymerization mechanism.
Resumo:
Dendrimers have potential for delivering chemotherapeutic drugs to solid tumours via the enhanced permeation and retention (EPR) effect. The impact of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces, however, has not been fully investigated. The current study has therefore characterised the effect on dendrimer disposition of conjugating α-carboxyl protected methotrexate (MTX) to a series of PEGylated 3H-labelled poly-L-lysine dendrimers ranging in size from generation 3 (G3) to 5 (G5) in rats. Dendrimers contained 50% surface PEG and 50% surface MTX. Conjugation of MTX generally increased plasma clearance when compared to conjugation with PEG alone. Conversely, increasing generation reduced clearance, increased metabolic stability and reduced renal elimination of the administered radiolabel. For constructs with molecular weights >20 kDa increasing the molecular weight of conjugated PEG also reduced clearance and enhanced metabolic stability but had only a minimal effect on renal elimination. Tissue distribution studies revealed retention of MTX conjugated smaller (G3-G4) PEG570 dendrimers (or their metabolic products) in the kidneys. In contrast, the larger G5 dendrimer was concentrated more in the liver and spleen. The G5 PEG1100 dendrimer was also shown to accumulate in solid Walker 256 and HT1080 tumours and comparative disposition data in both rats (1 to 2% dose/g in tumour) and mice (11% dose/g in tumour) are presented. The results of this study further illustrate the potential utility of biodegradable PEGylated poly-L-lysine dendrimers as long circulating vectors for the delivery and tumour-targeting of hydrophobic drugs.
Resumo:
Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.
Resumo:
RecA of Escherichia coli and its active nucleoprotein filaments with DNA are important for the genomic integrity and the genetic diversity. The formation of the DNA-RecA nucleoprotein filaments is a complex multiple-step process and can be affected by many factors. In this work, the effects of poly-L-lysine (PLL) on the DNA-RecA nucleoprotein filaments are investigated in vitro by agarose gel electrophoresis and atomic force microscopy (AFM). The observed morphologies vary with the concentration, the length, and the addition order of PLL. These distinctions provide information for the conformation change of DNA and the binding sites of RecA protein in the formation process of nucleoprotein filaments.
Resumo:
Graphene sheets functionalized covalently with biocompatible poly-L-lysine (PLL) were first synthesized in all alkaline solution. PLL-functionalized graphene is water-soluble and biocompatible, which makes it a novel material promising for biological applications. Graphene sheets played an important role as connectors to assemble these active amino groups Of Poly-L-lysine, which provided a very biocompatible. environment for further functionalization, such as attaching bioactive molecules. As an example, an amplified biosensor toward H2O2 based on linking peroxidase onto PLL-functionalized graphene was investigated.
Resumo:
An oxygen carrier was prepared by encapsulating carbonylated hemoglobin (CO-Hb) molecules into polypeptide vesicles made from poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) diblock copolymers in aqueous medium at pH 5.8. The encapsulation was confirmed by confocal laser scanning microscopy (CLSM). The morphology and size of the Vesicles were studied by field-emission scanning electron microscopy (ESEM). They had a spherical shape with it mean diameter of about 4 to 5 mu m. The encapsulation efficiency of hemoglobin was 40 wt %, and the hemoglobin content in the vesicles was 32 wt %. The CO-Hb encapsulated in the PLL-b-PPA vesicles was more stable than free CO-Hb under ambient conditions, In the presence of a O-2 atmosphere, the CO-Hb in the vesicle could be converted into oxygen-binding hemoglobin (O-2-Hb) under irradiation of visible light for 2 h. Therefore, the CO-Hb/PLL-b-PPA vesicles are expected to be used its red blood cell substitutes.
Resumo:
Polypeptide/polysaccharide graft copolymers poly(L-lysine)-graft-chitosan (PLL-g-Chi) were prepared by ring-opening polymerization (ROP) of epsilon-benzoxycarbonyl L-lysine N-carboxyanhydrides (Z-L-lysine NCA) in the presence of 6-O-triphenylmethyl chitosan. The PLL-g-Chi copolymers were thoroughly characterized by H-1 NMR, C-13 NMR, Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). The number-average degree of polymerization of PLL grafted onto the chitosan backbone could be adjusted by controlling the feed ratio of NCA to 6-O-triphenylmethyl chitosan. The particle size of the complexes formed from the copolymer and calf thymus DNA was measured by dynamic light scattering (DLS). It was found in the range of 120 similar to 340 nm. The gel retardation electrophoresis showed that the PLL-g-Chi copolymers possessed better plasmid DNA-binding ability than chitosan. The gene transfection effect in HEK 293T cells of the copolymers was evaluated, and the results showed that the gene transfection ability of the copolymer was better than that of chitosan and was dependent on the PLL grafting ratio. The PLL-g-Chi copolymers could be used as effective gene delivery vectors.
Resumo:
A novel biodegradable triblock copolymer poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) (PEG-PLA-PLL) was synthesized by acidolysis of poly(ethylene glycol)-b-poly(L-lactide)-b-poly(F-benzyloxycarbonyl-L-lysine) (PEG-PLA-PZLL) obtained by the ring-opening polymerization (ROP) of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride (ZLys NCA) with amino-terminated PEG-PLA-NH2 as a macro-initiator, and the pendant amino groups of the lysine residues were modified with a peptide known to modulate cellular functions, Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) in the presence of 1,1'-carbonyldiimidazole (CDI). The structures of PEG-PLA-PLL/RGD and its precursors were confirmed by H-1 NMR, FT-IR, amino acid analysis and XPS analysis. The cell adhesion and cell spread on the PEG-PLA-PLL/RGD film were enhanced compared to those on pure PLA film. Therefore, the novel RGD-grafted triblock copolymer is promising for cell or tissue engineering applications. Both copolymers PEG-PLA-PZLL and PEG-PLA-PLL showed an amphiphilic nature and could self-assemble into micelles of homogeneous spherical morphology. The micelles were determined by fluorescence technique, dynamic light scattering (DLS), and field emission scanning electron microscopy (ESEM) and could be expected to find application in drug and gene delivery systems.
Resumo:
Single-walled carbon nanotubes (SWNTs) were covalently functionalized with biocompatible poly-L-lysine, which is useful in promoting cell adhesion. SWNTs played an important role as connectors to assemble these active amino groups of poly-L-lysine, which provided a relative "friendly" and "soft" environment for further derivation, such as attaching bioactive molecules. As an application example, by further linking peroxidase, an amplified biosensing toward H2O2 concerning this assembly was investigated.
Resumo:
It is found that Ply adsorbed roughed silver electrode, it is easy to immobilize MP-11 with the electrostatic interaction and to prepare the MP-11/Ply/Ag modified electrode. The preparation method of the modified electrode is simple. In addition, the modified electrode obtained shows the high and stable electrocatalytic activity for O-2 reduction. It is also found that when the sixth coordination of heme in MP-11 is replaced with other coordination species with stronger coordination ability, such as imidazole, its formal redox potential shifts to the negative direction and the electrocatalytic activity for O-2 reduction is reduced.
Resumo:
The interfacial characteristics of poly-L-lysine (PL) attached on self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) were studied by an electrochemical method. The results indicated that PL\MPA layer inhibited partly the diffusion process of redox species in solution, and the electrode surface behaved like a microelectrode array. Its permeation effect was also strongly affected by Mg2+. The more Mg2+ ions were added into the electrolyte solution, the greater the difficulty with which the electron transfer of potassium ferricyanide took place. The three different conformations of PL on the electrode surface had different influences on the electron transfer processes of ferricyanide. PL in random coil state hindered most strongly the electron transfer behavior of ferricyanide,while the alpha-helical PL had nearly no effect and the effect of the beta-sheet state PL was intermediate of these. (C) 1997 Elsevier Science S.A.
Resumo:
We investigated the condensation of calf thymus DNA by amphiphilic polystyrene(m)-b-poly(l-lysine)(n) block copolymers (PSm-b- PLys(n), m, n = degree of polymerization), using small-angle X-ray scattering, polarized optical microscopy and laser scanning confocal microscopy. Microscopy studies showed that the DNA condenses in the form of fibrillar precipitates, with an irregular structure, due to electrostatic interactions between PLys and DNA. This is not modified by the presence of hydrophobic PS block. Scattering experiments show that the structure of the polyplexes corresponds to a local order of DNA rods which becomes more compact upon increasing n. It can be concluded that for DNA/ PSm-b- PLys(n) polyplexes, the balance between the PLys block length and the excess charge in the system plays an essential role in the formation of a liquid crystalline phase.
Nonspherical assemblies generated from polystyrene-b-poly(L-lysine) polyelectrolyte block copolymers
Resumo:
This report describes the aqueous solution self-assembly of a series of polystyrene(m)-b-poly(L-lysine)n block copolymers (m = 8-10; n = 10-70). The polymers are prepared by ring-opening polymerization of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride using amine terminated polystyrene macroinitiators, followed by removal of the benzyloxycarbonyl side chain protecting groups. The critical micelle concentration of the block copolymers determined using the pyrene probe technique shows a parabolic dependence on peptide block length exhibiting a maximum at n = approximately 20 (m = 8) or n = approximately 60 (m = 10). The shape and size of the aggregates has been studied by dynamic and static light scattering, small-angle neutron scattering (SANS), and analytical ultracentrifugation (AUC). Surprisingly, Holtzer and Kratky analysis of the static light scattering results indicates the presence of nonspherical, presumably cylindrical objects independent of the poly(L-lysine)n block length. This is supported by SANS data, which can be fitted well by assuming cylindrical scattering objects. AUC analysis allows the molecular weight of the aggregates to be estimated as several million g/mol, corresponding to aggregation numbers of several 10s to 100s. These aggregation numbers agree with those that can be estimated from the length and diameter of the cylinders obtained from the scattering results.