997 resultados para hydroxamic acid
Resumo:
A new synthetic pathway to analogues of the aglucones of naturally occurring cyclic hydroxamic acids (2,4-dihydroxy-l,4-benzoxazin-3-ones) has been developed. The new pathway involves the coupling of substituted nitrophenols wdth /-propyl-abromo- O-methoxymethylglycolate. These materials were reductively cyclised to reveal the hydroxamic acid functionality. Removal of the C-2 0-methoxymethyl protecting group was achieved chemoselectively using boron trichloride. The analogue 7-methoxy-2,4-dihydroxy-l,4-benzoxazin-3-one (DIMBOA) was assayed with papain and a semilog plot of activity of papain in the presence of excess DIMBOA was found to be linear. A single exponential equation was suggested as the model for kinetic analysis. '^ Nuclear magnetic resonance (NMR) spectra of a couple of hydroxamates were acquired as reference standards for future mechanistic studies of these compounds as thiol protease inhibitors. A 10% '^-labeled sample ofDIMBOA was also prepared for future mechanistic studies using NMR techniques.
Resumo:
(Figure Presented) Mixed micelles of cetyltrimethylammonium bromide (CTABr) or dodecyltrimethylammonium bromide (DTABr) and the α-nucleophile, lauryl hydroxamic acid (LHA) accelerate dephosphorylation of bis(2,4-dinitrophenyl) phosphate (BDNPP) over the pH range 4-10. With a 0.1 mole fraction of LHA in DTABr or CTABr, dephosphorylation of BDNPP is approximately 10 4-fold faster than its spontaneous hydrolysis, and monoanionic LHA - is the reactive species. The results are consistent with a mechanism involving concurrent nucleophilic attack by hydroxamate ion (i) on the aromatic carbon, giving an intermediate that decomposes to undecylamine and 2,4-dinitrophenol, and (ii) at phosphorus, giving an unstable intermediate that undergoes a Lossen rearrangement yielding a series of derivatives including N,N-dialkylurea, undecylamine, undecyl isocyanate, and carbamyl hydroxamate. © 2009 American Chemical Society.
Resumo:
Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.
Resumo:
Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.
Resumo:
The reactions of a variety of N-arylhydroxamates as nitrogen transfer reagents to acryloyl derivatives of (−)-8-phenylmenthol, (−)-quinine and (−)-Oppolzer’s sultam acting as Michael acceptors was studied. Poor to modest diastereoselection was observed in the formation of aziridines. The absolute structure of one of the pure diastereomers secured from Oppolzer’s auxiliary was established by X-ray crystallography and hence the absolute configuration of the derived methyl-N-phenylaziridine-2-carboxylate could be assigned. Whilst only poor facial selectivity was observed for chiral hydroxamic acid prepared from dehydroabietic acid, moderate to good enantioselection of aziridines could be achieved with the chiral quaternary salts based on cinchona alkaloids, especially with that of cinchonine. A model is presented to explain the origin of enantioselection and a mechanism is proposed for the aziridination reaction.
Resumo:
El limfoma de cèl•lules de mantell (LCM) és un limfoma de cèl•lules B incurable que presenta sobreexpressió de ciclina D1. Això fa necessari el desenvolupament de noves teràpies. Els gens supressors de tumors estan alterats en càncer pel silenciament epigenètic aberrant, com a conseqüència de la desacetilació de les histones dels seus promotors. Els inhibidors de les desacetilases d'histones (HDACi) són nous compostos amb resultats prometedors per al tractament de tumors. L'objectiu principal, i que ha durat 7 mesos, va ser analitzar l'activitat antitumoral de l'àcid hidroxàmic suberoilanílid (SAHA, vorinostat), un HDACi en fase d'assajos clínics per al tractament de varis tumors, en cèl•lules de LCM. Es va analitzar la sensibilitat al SAHA (Merck Pharmaceuticals) en nou línies cel•lulars humanes de LCM, que es diferenciaven en les alteracions genètiques, les característiques replicatives i la sensibilitat als fàrmacs; i cèl•lules primàries de 6 pacients. El SAHA va presentar un efecte citotòxic heterogeni amb DL50 (Dosi Letal 50) de 3.25 μM a &25 μM amb 24 d'incubació. Aquest efecte citotòxic s'incrementava notablement després de 48 hores d'incubació assolint una DL50 de 0.34 a 5.69 μM. Cal destacar que 5 dels 6 casos de les mostres primàries de LCM van mostrar una elevada sensibilitat (DL50 & 8.07 μM). A nivell mecanistic, el SAHA va augmentar l'acetilació de les histones H3 i H4, i va disminuir els nivells de proteïna de la ciclina D1 i c-Flip. La citometria de flux i els anàlisis per Western Blot van posar de manifest que l'efecte citotòxic del SAHA es dóna a través de l'activació de la via mitocondrial de mort cel•lular i la cascada de caspases. El SAHA indueix l'expressió transcripcional de la proteïna proapoptòtica Bmf. Aquests resultats suggereixen que el SAHA podria ser una nova teràpia prometedora per al tractament del LCM.
Resumo:
BACKGROUND: Histone deacetylase inhibitors (HDACi) are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB) is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities. RESULTS: We show here that the HDACi Sodium Butyrate (NaB), suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA) strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells. CONCLUSION: HDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.
Resumo:
Open chain hydroxamic acid (Hx) can exist as Z and E diastereomers of two tautomers, hydroxamic acid and hydroximic acid. The conformational stability of the formohydroxamic acid isomers evaluated by PM3 compared better to ab initio results from the literature than AM1 results. Structural data of the cyclic Hx 2,4-dihydroxy-7-metoxy-2H-1,4-benzoxazin-3(4 H)-one (DIMBOA) obtained by both semiempirical methods compared well to ab initio results. pKa data from the literature for derivatives of the aldolic isomer of DIMBOA were compared to the stability of the anions resulting from the loss of protons of their phenol and hydroxamic acid groups, determined as the difference in heat of formation between anionic and neutral forms, calculated by AM1 and PM3 methods. Good correlations between theoretical and experimental data were obtained for both semiempirical methods.
Resumo:
The aim of this paper was to use colorimetric assays for hydroxamic acid to quantify the biodiesel content in diesel and compare it with the traditional method (infrared spectroscopy, using the EN 14078 method). Samples were prepared from B2 to B10 with two kinds of diesel - S500 (red) and S50 (yellow) - to obtain two calibration curves. Through statistical methods it was shown that the slopes of the straight lines obtained for the different types of diesel were the same. Thus, the type of diesel did not influence the results of the colorimetric assay for hydroxamic acid. Real samples collected from gas stations were analyzed by both methods (colorimetry and EN 14078). By applying Student's t-test it was concluded that the methods could be considered statistically equivalent. Therefore, it was confirmed that the colorimetric assay for hydroxamic acid is suitable for detecting and quantifying the content of biodiesel in biodiesel/diesel blends and can also be easily adapted to field analyses.
Resumo:
oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Summary Trichostatin A (TSA) is a histone deacetylase inhibitor that induces histone hyperacetylation and increases gene expression levels. The aim of the present study was to establish a suitable condition for the use of TSA in in vitro cultures of bovine embryos, and to determine whether TSA would increase blastocyst rates by improvement of chromatin remodelling during embryonic genome activation and by increasing the expression of crucial genes during early development. To test this hypothesis, 8-cell embryos were exposed to four concentrations of TSA for different periods of time to establish adequate protocols. In a second experiment, three experimental groups were selected for the evaluation of embryo quality based on the following parameters: apoptosis, total cell number and blastocyst hatching. TSA promoted embryonic arrest and degeneration at concentrations of 15, 25 and 50 nM. All treated groups presented lower blastocyst rates. Exposure of embryos to 5 nM for 144 h and to 15 nM for 48 h decreased blastocyst hatching. However, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (TUNEL) assay revealed similar apoptosis rates and total cell numbers in all groups studied. Although, in the present study, TSA treatment did not improve the parameters studied, the results provided background information on TSA supplementation during in vitro culture of bovine embryos and showed that embryo quality was apparently not affected, despite a decrease in blastocyst rate after exposure to TSA. © Cambridge University Press 2011.
Resumo:
Cancer is a multifactorial disease characterized by a very complex etiology. Basing on its complex nature, a promising therapeutic strategy could be based by the “Multi-Target-Directed Ligand” (MTDL) approach, based on the assumption that a single molecule could hit several targets responsible for the pathology. Several agents acting on DNA are clinically used, but the severe deriving side effects limit their therapeutic application. G-quadruplex structures are DNA secondary structures located in key zones of human genome; targeting quadruplex structures could allow obtaining an anticancer therapy more free from side effects. In the last years it has been proved that epigenetic modulation can control the expression of human genes, playing a crucial role in carcinogenesis and, in particular, an abnormal expression of histone deacetylase enzymes are related to tumor onset and progression. This thesis deals with the design and synthesis of new naphthalene diimide (NDI) derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development, such as HDACs. NDI-polyamine and NDI-polyamine-hydroxamic acid conjugates have been designed with the aim to provide potential MTDLs, in order to create molecules able simultaneously to interact with different targets involved in this pathology, specifically the G-quadruplex structures and HDAC, and to exploit the polyamine transport system to get selectively into cancer cells. Macrocyclic NDIs have been designed with the aim to improve the quadruplex targeting profile of the disubstituted NDIs. These compounds proved the ability to induce a high and selective stabilization of the quadruplex structures, together with cytotoxic activities in the micromolar range. Finally, trisubstituted NDIs have been developed as G-quadruplex-binders, potentially effective against pancreatic adenocarcinoma. In conclusion, all these studies may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.
Resumo:
The present study was performed to evaluate the role of matrix metalloproteinases (MMP) in the pathogenesis of the inflammatory reaction and the development of neuronal injury in a rat model of bacterial meningitis. mRNA encoding specific MMPs (MMP-3, MMP-7, MMP-8, and MMP-9) and the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) were significantly (P < 0.04) upregulated, compared to the beta-actin housekeeping gene, in cortical homogenates at 20 h after infection. In parallel, concentrations of MMP-9 and TNF-alpha in cerebrospinal fluid (CSF) were significantly increased in rats with bacterial meningitis compared to uninfected animals (P = 0.002) and showed a close correlation (r = 0.76; P < 0. 001). Treatment with a hydroxamic acid-type MMP inhibitor (GM6001; 65 mg/kg intraperitoneally every 12 h) beginning at the time of infection significantly lowered the MMP-9 (P < 0.02) and TNF-alpha (P < 0.02) levels in CSF. Histopathology at 25.5 +/- 5.7 h after infection showed neuronal injury (median [range], 3.5% [0 to 17.5%] of the cortex), which was significantly (P < 0.01) reduced to 0% (0 to 10.8%) by GM6001. This is the first report to demonstrate that MMPs contribute to the development of neuronal injury in bacterial meningitis and that inhibition of MMPs may be an effective approach to prevent brain damage as a consequence of the disease.