984 resultados para hydrogen producing characterization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 degrees C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2) mol(-1) glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H, and volatile acids` producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H-2 by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H-2/mol sucrose), 20% (1.6 mol H-2/mol sucrose), 15% (1.2 mol H-2/mol sucrose) and 4% (0.3 mol H-2/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the biggest challenges today is to develop clean fuels, which do not emit pollutant and with viable implementation. One of the options currently under study is the hydrogen production process. In this context, this work aims to study the technical and economical aspects of the incorporation process of hydrogen producing by ethanol steam reforming in the sugar cane industry and MCFC (molten carbonate fuel cell) application on it to generate electric power. Therefore, it has been proposed a modification in the traditional process of sugar cane industry, in order to incorporate hydrogen production, besides the traditional products (sugar, ethylic, hydrated and anhydric alcohol). For this purpose, a detailed theoretical study of the ethanol production process, describing the considerations to incorporate the hydrogen production will be performed. After that, there will be a thermodynamic study for analysing the innovation of this production chain, as well as a study of economic engineering to allocate the costs of products of the new process, optimising it and considering the thermoeconomics as being as an analysis tool. This proposal aims to improve Brazil's position in the ranking of international biofuels, corroborating the nation to be a power in the hydrogen era. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alternative fuel sources have been extensively studied. Hydrogen gas has gained attention because its combustion releases only water, and it can be produced by microorganisms using organic acids as substrates. The aim of this study was to enrich a microbial consortium of photosynthetic purple non-sulfur bacteria from an Upflow Anaerobic Sludge Blanket reactor (UASB) using malate as carbon source. After the enrichment phase, other carbon sources were tested, such as acetate (30 mmol l(-1)), butyrate (17 mmol l(-1)), citrate (11 mmol l(-1)), lactate (23 mmol l(-1)) and malate (14.5 mmol l(-1)). The reactors were incubated at 30 degrees C under constant illumination by 3 fluorescent lamps (81 mu mol m(-2) s(-1)). The cumulative hydrogen production was 7.8, 9.0, 7.9, 5.6 and 13.9 mmol H-2 l(-1) culture for acetate, butyrate, citrate, lactate and malate, respectively. The maximum hydrogen yield was 0.6, 1.4, 0.7, 0.5 and 0.9 mmol H-2 mmol(-1) substrate for acetate, butyrate, citrate, lactate and malate, respectively. The consumption of substrates was 43% for acetate, 37% for butyrate, 100% for citrate, 49% for lactate and 100% for malate. Approximately 26% of the clones obtained from the Phototrophic Hydrogen-Producing Bacterial Consortium (PHPBC) were similar to Rhodobacter, Rhodospirillum and Rhodopseudomonas, which have been widely cited in studies of photobiological hydrogen production. Clones similar to the genus Sulfurospirillum (29% of the total) were also found in the microbial consortium. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the current study, a novel non-acetone forming butanol and ethanol producer Was isolated and identified. Based on the 16s rDNA sequence BLAST and phylogenetic analyses, it was found to have high similarity with the reported hydrogen producing strains of Clostridium sporogenes. Biochemical studies revealed that it is lipase and protease positive. The lipolytic and proteolytic properties are the very important characteristics of Clostridium sporogenes. Sugar utilization profile studies were positive for glucose, saccharose, cellobiose and weakly positive result to xylose. This study demonstrated C. sporogenes BE01, an isolate from NIIST is having potential to compete with existing, well known butanol producers with the advantage of no acetone in the final solvent mixture. Rice straw hydrolysate is a potent source of substrate for butanol production by C. sporogenes BE01. Additional supplementation of vitamins and minerals were avoided by using rice straw hydrolysate as substrate. Its less growth, due to the inhibitors present in the hydrolysate and also inhibition by products resulted in less efficient conversion of sugars to butanol. Calcium carbonate played an important role in improving the butanol production, by providing the buffering action during fermentation and stimulating the electron transport mediators and redox reactions favoring butanol production. Its capability to produce acetic acid, butyric acid and hydrogen in significant quantities during butanol production adds value to the conversion process of lignocellulosic biomass to butanol. High cell density fermentation by immobilizing the cells on to ceramic particles improved the solvents and VFA production. Reduced sugar utilization from the concentrated hydrolysate could be due to accumulation of inhibitors in the hydrolysate during concentration. Two-stage fermentation was very efficient with immobilized cells and high conversions of sugars to solvents and VFAs were achieved. The information obtained from the study would be useful to develop a feasible technology for conversion of lignocellulosic biomass to biobutanol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A survey was performed to estimate the frequency of Escherichia coli and Shiga toxin-producing E. coli (STEC) in carcasses obtained from an abattoir in Brazil between February 2006 and June 2007. A total of 216 beef carcasses were sampled at three stages of the slaughter process-preevisceration, postevisceration, and postprocessing-during the rain and dry seasons, respectively. Of the carcasses sampled, 58%, were preevisceration E. coli positive, 38% were postevisceration positive, and 32% postprocessing positive. At the postprocessing stage, the isolation of E. coli was twice as high in the rain season. E. coli was isolated from 85 carcasses of which only 3 (1.4%) were positive for stx-encoding genes. No E. coli O157 serogroup isolates were detected. No antimicrobial resistance was found in nine of the isolates (10% of the total). The most frequent resistances were seen against cephalothin (78%), streptomycin (38%), nalidixic acid (36%), and tetracycline (30%). Multidrug resistance (MDR) to three or more antimicrobial agents was determined in 28 (33%) E. coli isolates. The presence of STEC and MDR strains among the isolates in the beef carcasses emphasizes the importance of proper handling to prevent carcass contamination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Extended spectrum β-lactamases (ESBLs) are enzymes that degrade β-lactam antibiotics and have been reported to be an important cause of nosocomial infection in worldwide. METHODS: During 2009, 659 enterobacteria strains were isolated from different clinical specimens and tested for ESBL production. The disk approximation test, combined disk method and addition of clavulanic acid were used for phenotypic detection of the ESBL-producing strains and PCR for detection of the blaTEM and blaCTX-M genes. RESULTS: Among the isolates, 125 were ESBL producers. The blaCTX-M and blaTEM genes were detected in 90.4% and 75% of the strains, respectively. Most strains were isolated from urine. Klebsiella pneumoniae was the most prevalent organism. Microorganisms presented high resistance to the antibiotics. CONCLUSIONS: These results support the need for extending ESBL detection methods to different pathogens of the Enterobacteriaceae family because these methods are only currently standardized by the CLSI for Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and Proteus mirabilis. Carbapenems were the antibiotic class of choice for the treatment of infections caused by ESBL-producing Enterobacteriaceae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AbstractINTRODUCTIONThe aim of this study was to detect the prevalence of the extended-spectrum beta-lactamase (ESBL)-encoding CTX-M gene in Escherichia coliisolates.METHODS:Phenotypic screening of 376 E. coli isolates for ESBL was conducted using disk diffusion. ESBL-producing isolates were tested using PCR and specific primers. The blaCTX-M cluster was identified using the RFLP method, and its genotype was sequenced.RESULTS:From 202 ESBL-producing E. coli , 185 (91.5%) possessed CTX-M genes. CTX-M-1 subtypes were found in 98% of the isolates. The blaCTX-M gene was identical to CTX-M-15.CONCLUSIONS:A high prevalence of CTX-M-1-producing E. coli apparently exists in Shiraz, Iran.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Desde el tiempo de la conquista y colonización en siglo XVI, el territorio argentino fue poblado por especies exóticas entre ellas ovinos. El tipo de animal introducido al territorio determinó la formación poblaciones locales del tipo criollo donde en el caso de los ovinos pertenecían al tipo lanero. Actualmente dichas poblaciones se encuentran relegadas y la mayoría en manos de pequeños productores. En base a estudios previos se puede afirmar que constituirían un material genético de importante variabilidad y de un potencial textil importante. El proyecto pretende realizar una caracterización zootécnica y genética mediante relevamientos poblacionales en regiones donde aún se conserva material autóctono o local del tipo criollo. El relevamiento comprende un posicionamiento geográfico y breve descripción del sistema de producción, la toma de información biológica, morfológica y zoométrica de los animales de la majada y la correspondiente obtención de muestras de lana. Estas muestras son remitidas al Laboratorio de Fibras Animales de la Red SUPPRAD para su evaluación. Para determinar la variabilidad zootécnica y genérica de las poblaciones se confeccionan Índices de arcaísmo o primariedad basados en marcadores fenotípicos, bioquímicos y moleculares. A ello se propone incorporar estudios sobre desempeño productivo y reproductivo de las poblaciones para poner analizar los factores que afectan la producción de lana y diseñar estrategias de manejo que la optimicen. Ello posibilitará evaluar la variabilidad de las poblaciones y proponer estrategias de conservación y/o mejoramiento. Paralelamente se podrá establecer el destino del producto textil producido por dichas poblaciones ovinas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seventy bacterial isolates from the rhizosphere of tomato were screened for antagonistic activity against the tomato foot and root rot-causing fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici. One isolate, strain PCL1391, appeared to be an efficient colonizer of tomato roots and an excellent biocontrol strain in an F. oxysporum/tomato test system. Strain PCL1391 was identified as Pseudomonas chlororaphis and further characterization showed that it produces a broad spectrum of antifungal factors (AFFs), including a hydrophobic compound, hydrogen cyanide, chitinase(s), and protease(s). Through mass spectrometry and nuclear magnetic resonance, the hydrophobic compound was identified as phenazine-1-carboxamide (PCN). We have studied the production and action of this AFF both in vitro and in vivo. Using a PCL1391 transposon mutant, with a lux reporter gene inserted in the phenazine biosynthetic operon (phz), we showed that this phenazine biosynthetic mutant was substantially decreased in both in vitro antifungal activity and biocontrol activity. Moreover, with the same mutant it was shown that the phz biosynthetic operon is expressed in the tomato rhizosphere. Comparison of the biocontrol activity of the PCN-producing strain PCL1391 with those of phenazine-1-carboxylic acid (PCA)-producing strains P. fluorescens 2-79 and P. aureofaciens 30-84 showed that the PCN-producing strain is able to suppress disease in the tomato/F. oxysporum system, whereas the PCA-producing strains are not. Comparison of in vitro antifungal activity of PCN and PCA showed that the antifungal activity of PCN was at least 10 times higher at neutral pH, suggesting that this may contribute to the superior biocontrol performance of strain PCL1391 in the tomato/F. oxysporum system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyanobacteria are the only prokaryotic organisms performing oxygenic photosynthesis. They comprise a diverse and versatile group of organisms in aquatic and terrestrial environments. Increasing genomic and proteomic data launches wide possibilities for their employment in various biotechnical applications. For example, cyanobacteria can use solar energy to produce H2. There are three different enzymes that are directly involved in cyanobacterial H2 metabolism: nitrogenase (nif) which produces hydrogen as a byproduct in nitrogen fixation; bidirectional hydrogenase (hox) which functions both in uptake and in production of H2; and uptake hydrogenase (hup) which recycles the H2 produced by nitrogenase back for the utilization of the cell. Cyanobacterial strains from University of Helsinki Cyanobacteria Collection (UHCC), isolated from the Baltic Sea and Finnish lakes were screened for efficient H2 producers. Screening about 400 strains revealed several promising candidates producing similar amounts of H2 (during light) as the ΔhupL mutant of Anabaena PCC 7120, which is specifically engineered to produce higher amounts of H2 by the interruption of uptake hydrogenase. The optimal environmental conditions for H2 photoproduction were significantly different between various cyanobacterial strains. All suitable strains revealed during screening were N2-fixing, filamentous and heterocystous. The top ten H2 producers were characterized for the presence and activity of the enzymes involved in H2 metabolism. They all possess the genes encoding the conventional nitrogenase (nifHDK1). However, the high H2 photoproduction rates of these strains were shown not to be directly associated with the maximum capacities of highly active nitrogenase or bidirectional hydrogenase. Most of the good producers possessed a highly active uptake hydrogenase, which has been considered as an obstacle for efficient H2 production. Among the newly revealed best H2 producing strains, Calothrix 336/3 was chosen for further, detailed characterization. Comparative analysis of the structure of the nif and hup operons encoding the nitrogenase and uptake hydrogenase enzymes respectively showed minor differences between Calothrix 336/3 and other N2-fixing model cyanobacteria. Calothrix 336/3 is a filamentous, N2-fixing cyanobacterium with ellipsoidal, terminal heterocysts. A common feature of Calothrix 336/3 is that the cells readily adhere to substrates. To make use of this feature, and to additionally improve H2 photoproduction capacity of the Calothrix 336/3 strain, an immobilization technique was applied. The effects of immobilization within thin alginate films were evaluated by examining the photoproduction of H2 of immobilized Calothrix 336/3 in comparison to model strains, the Anabaena PCC 7120 and its ΔhupL mutant. In order to achieve optimal H2 photoproduction, cells were kept under nitrogen starved conditions (Ar atmosphere) to ensure the selective function of nitrogenase in reducing protons to H2. For extended H2 photoproduction, cells require CO2 for maintenance of photosynthetic activity and recovery cycles to fix N2. Application of regular H2 production and recovery cycles, Ar or air atmospheres respectively, resulted in prolongation of H2 photoproduction in both Calothrix 336/3 and the ΔhupL mutant of Anabaena PCC 7120. However, recovery cycles, consisting of air supplemented with CO2, induced a strong C/N unbalance in the ΔhupL mutant leading to a decrease in photosynthetic activity, although total H2 yield was still higher compared to the wild-type strain. My findings provide information about the diversity of cyanobacterial H2 capacities and mechanisms and provide knowledge of the possibilities of further enhancing cyanobacterial H2 production.