999 resultados para hybrid promoter
Resumo:
Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.
Resumo:
Synthetic biology has recently had a great development, many papers have been published and many applications have been presented, spanning from the production of biopharmacheuticals to the synthesis of bioenergetic substrates or industrial catalysts. But, despite these advances, most of the applications are quite simple and don’t fully exploit the potential of this discipline. This limitation in complexity has many causes, like the incomplete characterization of some components, or the intrinsic variability of the biological systems, but one of the most important reasons is the incapability of the cell to sustain the additional metabolic burden introduced by a complex circuit. The objective of the project, of which this work is part, is trying to solve this problem through the engineering of a multicellular behaviour in prokaryotic cells. This system will introduce a cooperative behaviour that will allow to implement complex functionalities, that can’t be obtained with a single cell. In particular the goal is to implement the Leader Election, this procedure has been firstly devised in the field of distributed computing, to identify the process that allow to identify a single process as organizer and coordinator of a series of tasks assigned to the whole population. The election of the Leader greatly simplifies the computation providing a centralized control. Further- more this system may even be useful to evolutionary studies that aims to explain how complex organisms evolved from unicellular systems. The work presented here describes, in particular, the design and the experimental characterization of a component of the circuit that solves the Leader Election problem. This module, composed of an hybrid promoter and a gene, is activated in the non-leader cells after receiving the signal that a leader is present in the colony. The most important element, in this case, is the hybrid promoter, it has been realized in different versions, applying the heuristic rules stated in [22], and their activity has been experimentally tested. The objective of the experimental characterization was to test the response of the genetic circuit to the introduction, in the cellular environment, of particular molecules, inducers, that can be considered inputs of the system. The desired behaviour is similar to the one of a logic AND gate in which the exit, represented by the luminous signal produced by a fluorescent protein, is one only in presence of both inducers. The robustness and the stability of this behaviour have been tested by changing the concentration of the input signals and building dose response curves. From these data it is possible to conclude that the analysed constructs have an AND-like behaviour over a wide range of inducers’ concentrations, even if it is possible to identify many differences in the expression profiles of the different constructs. This variability accounts for the fact that the input and the output signals are continuous, and so their binary representation isn’t able to capture the complexity of the behaviour. The module of the circuit that has been considered in this analysis has a fundamental role in the realization of the intercellular communication system that is necessary for the cooperative behaviour to take place. For this reason, the second phase of the characterization has been focused on the analysis of the signal transmission. In particular, the interaction between this element and the one that is responsible for emitting the chemical signal has been tested. The desired behaviour is still similar to a logic AND, since, even in this case, the exit signal is determined by the hybrid promoter activity. The experimental results have demonstrated that the systems behave correctly, even if there is still a substantial variability between them. The dose response curves highlighted that stricter constrains on the inducers concentrations need to be imposed in order to obtain a clear separation between the two levels of expression. In the conclusive chapter the DNA sequences of the hybrid promoters are analysed, trying to identify the regulatory elements that are most important for the determination of the gene expression. Given the available data it wasn’t possible to draw definitive conclusions. In the end, few considerations on promoter engineering and complex circuits realization are presented. This section aims to briefly recall some of the problems outlined in the introduction and provide a few possible solutions.
Resumo:
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Resumo:
The glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase were associated with the regulatory sequences of a cellular gene expressed ubiquitously--that coding for the largest subunit of RNA polymerase II. In transient expression assays, glucocorticoid responsiveness of the hybrid regulatory regions depends on the spatial relationship and number of regulatory elements. Two parameters affect the ratio of induction by glucocorticoids: the basal level of the hybrid promoter that is affected by the RNA polymerase II regulatory sequences and the glucocorticoid-induced level that depends on the distance between the GRUs and the TATA box. A fully active glucocorticoid-responsive hybrid gene was used to generate transgenic mice. Results show that a composite regulatory pattern is obtained: ubiquitous basal expression characteristic of the RNA polymerase II gene and liver-specific glucocorticoid activation characteristic of the tyrosine aminotransferase GRUs. This result demonstrates that the activity of the tyrosine aminotransferase GRUs is cell-type-specific not only in cultured cells but also in the whole animal.
Resumo:
The down-regulation of the tumor-suppressor gene RASSF1A has been shown to increase cell proliferation in several tumors. RASSF1A expression is regulated through epigenetic events involving the polycomb repressive complex 2 (PRC2); however, the molecular mechanisms modulating the recruitment of this epigenetic modifier to the RASSF1 locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand on the RASSF1 gene locus in several cell lines and tissues and binds PRC2. ANRASSF1 is transcribed through RNA polymerase II and is 5'-capped and polyadenylated; it exhibits nuclear localization and has a shorter half-life compared with other lncRNAs that bind PRC2. ANRASSF1 endogenous expression is higher in breast and prostate tumor cell lines compared with non-tumor, and an opposite pattern is observed for RASSF1A. ANRASSF1 ectopic overexpression reduces RASSF1A abundance and increases the proliferation of HeLa cells, whereas ANRASSF1 silencing causes the opposite effects. These changes in ANRASSF1 levels do not affect the RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase in both PRC2 occupancy and histone H3K27me3 repressive marks, specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression was detected on PRC2 occupancy and histone H3K27me3 at the promoter regions of RASSF1C and the four other neighboring genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrated that ANRASSF1 forms an RNA/DNA hybrid and recruits PRC2 to the RASSF1A promoter. Together, these results demonstrate a novel mechanism of epigenetic repression of the RASSF1A tumor suppressor gene involving antisense unspliced lncRNA, in which ANRASSF1 selectively represses the expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome might contribute to a location-specific epigenetic modulation of genes.
Resumo:
Calbindin-D28K and/or parvalbumin appear to influence the selective vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS). Their immunoreactivity is undetectable in motoneurons readily damaged in human ALS, and in differentiated motoneuron hybrid cells [ventral spinal cord (VSC 4.1 cells)] that undergo calcium-dependent apoptotic cell death in the presence of ALS immunoglobulins. To provide additional evidence for the role of calcium-binding proteins in motoneuron vulnerability, VSC 4.1 cells were infected with a retrovirus carrying calbindin-D28K cDNA under the control of the promoter of the phosphoglycerate kinase gene. Differentiated calbindin-D28K cDNA-infected cells expressed high calbindin-D28K and demonstrated increased resistance to ALS IgG-mediated toxicity. Treatment with calbindin-D28K antisense oligodeoxynucleotides, which significantly decreased calbindin-D28K expression, rendered these cells vulnerable again to ALS IgG toxicity.
Resumo:
The transcriptional transactivator (Tas) of simian foamy virus type 1 strongly augments gene expression directed by both the promoter in the viral long terminal repeat and the newly discovered internal promoter located within the env gene. A region of 121 bp, located immediately 5' to the TATA box in the internal promoter, is required for transactivation by Tas. The present study aimed to identify the precise Tas-responsive target(s) in this region and to determine the role of Tas in transcriptional regulation. By analysis of both clustered-site mutations and hybrid promoters in transient expression assays in murine and simian cells, two separate sequence elements within this 121-bp region were shown to be Tas-dependent transcriptional enhancers. These targets, each < 30 bp in length and displaying no apparent sequence homology one to the other, are designated the promoter-proximal and promoter-distal elements. By means of the gel electrophoresis mobility-shift assays, using purified glutathione S-transferase-Tas fusion protein expressed in Escherichia coli, the target proximal to the TATA box exhibited strong binding to glutathione S-transferase-Tas, whereas the distal element appears not to bind. In addition, footprint analysis revealed that 26 bp in the promoter proximal element was protected by glutathione S-transferase-Tas from DNase I. We propose a model for transactivation of the simian foamy virus type 1 internal promoter in which Tas interacts directly with the proximal target element positioned immediately 5' to the TATA box. In this model, Tas attached to this element is presumed to interact with a component(s) of the cellular RNA polymerase II initiation complex and thereby enhance transcription directed by the viral internal promoter.
Resumo:
The pathogenic human parvovirus B19 is an autonomously replicating virus with a remarkable tropism for human erythroid progenitor cells. Although the target cell specificity for B19 infection has been suggested to be mediated by the erythrocyte P-antigen receptor (globoside), a number of nonerythroid cells that express this receptor are nonpermissive for B19 replication. To directly test the role of expression from the B19 promoter at map unit 6 (B19p6) in the erythroid cell specificity of B19, we constructed a recombinant adeno-associated virus 2 (AAV), in which the authentic AAV promoter at map unit 5 (AAVp5) was replaced by the B19p6 promoter. Although the wild-type (wt) AAV requires a helper virus for its optimal replication, we hypothesized that inserting the B19p6 promoter in a recombinant AAV would permit autonomous viral replication, but only in erythroid progenitor cells. In this report, we provide evidence that the B19p6 promoter is necessary and sufficient to impart autonomous replication competence and erythroid specificity to AAV in primary human hematopoietic progenitor cells. Thus, expression from the B19p6 promoter plays an important role in post-P-antigen receptor erythroid-cell specificity of parvovirus B19. The AAV-B19 hybrid vector system may also prove to be useful in potential gene therapy of human hemoglobinopathies.
Resumo:
Unidirectional hybridization between bluegill (Lepomis macrochirus) and pumpkinseed (L. gibbosus) sunfish enables researchers to explore the relative expression of paternal and maternal alleles in hybrids. Past studies have found that the metabolic dysfunction in bluegill-pumpkinseed hybrids may be due to incompatibilities between nuclear and mitochondrial genomes. However, the consequences of hybridization on body size and muscle growth have not been examined. This topic is particularly interesting because hybrids grow larger than parentals despite the fact that they are often sired by smaller, precociously mature bluegills. In order to improve our understanding of growth dynamics in hybrid sunfish, I conducted real-time quantitative PCR using species-specific primers on the white muscle tissue of bluegills, pumpkinseeds, and hybrids collected from Lake Opinicon, ON. Five growth factors that have been linked to muscle growth and body size demonstrated similar expression for maternal and paternal alleles. While about half of the hybrids showed the same pattern with myogenin, about half showed very low levels of mRNA for the paternal (bluegill) gene. While this did not explain the heterosis seen in hybrids, it may explain the small body phenotype of the cuckholding bluegill males. I explored the upstream genetic structure of bluegill myogenin and established that four alleles exist within the population. Furthermore, I uncovered a relationship in hybrids between the proximal promoter/ 5’ UTR of myogenin and its transcript level. I found that the hybrids demonstrating low paternal myogenin expression unfailingly possessed A3 or A4 alleles, but future studies will be needed to reveal the molecular links between the genotype and the growth phenotype. A similar genotype-phenotype association was not obvious in parentals, even those that were homozygous for these alleles. Whether this relationship can provide insight into the genetic determinants of bluegill alternative mating strategies has yet to be determined.
Resumo:
The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.