935 resultados para human bone
Resumo:
To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.
Resumo:
Mesenchymal Stem Cells (MSC) are frequently incorporated into osteochondral implants and cell seeding is often facilitated with hydrogels which exert a profound influence on the chondrogenic differentiation of MSC. An attempt was made to elucidate this effect by comparing the chondrogenic differentiation of Bone Marrow Stromal Cells (BMSC) in fibrin and fibrin alginate composites. A biphasic osteochondral model which simulated the native in vivo environment was employed in the study. In the first stage of the experiment, BMSC was encapsulated in fibrin, Fibrin Alginate 0.3% (FA0.3) and 0.6% (FA0.6). Chondrogenic differentiation within these cell-hydrogel pellets was compared against that of standard cell pellets under inductive conditions and the matrices which supported chondrogenesis were used in the cartilage phase of biphasic constructs. Neo-cartilage growth was monitored in these cocultures. It was observed that hydrogel encapsulation influenced mesenchymal condensation which preceded chondrogenic differentiation. Early cell agglomeration was observed in fibrin as compared to fibrin alginate composites. These fibrin encapsulated cells differentiated into chondrocytes which secreted aggrecan and collagen II. When the alginate content rose from 0.3 to 0.6%, chondrogenic differentiation declined with a reduction in the expression of collagen II and aggrecan. Fibrin and FA0.3 were tested in the cartilage phase of the biphasic osteochondral constructs and the former supported superior cartilage growth with higher cellularity, total Glycosaminoglycan (GAG) and collagen II levels. The FA0.3 cartilage phase was found to be fragmented and partially calcified. The use of fibrin for cartilage repair was advocated as it facilitated BMSC chondrogenesis and cartilaginous growth in an osteochondral environment.
Resumo:
The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.
Resumo:
Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.
Resumo:
Strontium (Sr), Zinc (Zn), magnesium (Mg), and silicon (Si) are reported to be essential trace elements for the growth and mineralization of bone. We speculated that the combination of these bioactive elements in bioceramics may be effective to regulate the osteogenic property of boneforming cells. In this study, two Sr-containing silicate bioceramics, Sr2ZnSi2O7 (SZS) and Sr2MgSi2O7 (SMS), were prepared. The biological response of human bone marrow mesenchymal stem cells (BMSCs) to the two bioceramics (in the forms of powders and dense ceramic bulks) was systematically studied. In powder form, the effect of powder extracts on the viability and alkaline phosphatase (ALP) activity of BMSCs was investigated. In ceramic disc form, both direct and indirect coculture of BMSCs with ceramic discs were used to investigate their biological response, including attachment, proliferation, ALP activity, and bone-related genes expression. Beta-tricalcium phosphate (b-TCP) and akermanite (Ca2MgSi2O7, CMS) were used as control materials. The results showed that the Sr, Zn, and Si (or Sr, Mg, and Si)-containing ionic products from SZS and SMS powders enhanced ALP activity of BMSCs, compared to those from b-TCP. Both SZS and SMS ceramic discs supported the growth of BMSCs, and most importantly, significantly enhanced the ALP activity and bone-related genes expression of BMSCs as compared to b-TCP. The results suggest that the specific combination of bioactive ions (Sr, Zn, Si, e.g.) in bioceramics is a viable way to improve the biological performance of biomaterials, and the form of materials and surface properties were nonnegligible factors to influence cell response.
Resumo:
Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.
Resumo:
Synthetic scaffolds combined with growth factors have the potential to replace allograft or autograft as a graft material for spinal interbody fusion. Such tissue engineering approaches may be useful in Adolescent Idiopathic Scoliosis (AIS) surgery, however there are no studies to date examining the use of such biodegradable implants in combination with biologics in a thoracic spine model. This in vivo study examines the use of biodegradable polycaprolactone (PCL) based scaffolds with rhBMP-2 as a bone graft substitute in a sheep thoracic fusion model, where an anterior approach is used to simulate minimally invasive surgical deformity correction in the setting of AIS.
Resumo:
Bioactive materials with osteostimulation properties are of great importance to promote osteogenic differentiation of human bone marrow stromal cells (hBMSCs) for potential bone regeneration. We have recently synthesized nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic powders which showed excellent apatite-mineralization ability. The aim of this study was to investigate the interaction of hBMSCs with NAGEL bioceramic bulks and their ionic extracts, and to explore the osteostimulation properties of NAGEL bioceramics and the possible molecular mechanism. The cell attachment, proliferation, bone-related gene expression (ALP, OPN and OCN) and WNT signalling pathways (WNT3a, FZD6, AXIN2 and CTNNB) of hBMSCs cultured on NAGEL bioceramic disks were systematically studied. We further investigated the biological effects of ionic products from NAGEL powders on cell proliferation and osteogenic differentiation of hBMSCs by culturing cells with NAGEL extracts. Furthermore, the effect of NAGEL bioceramics on the osteogenic differentiation in hBMSCs was also investigated with the addition of cardamonin, a WNT inhibitor. The results showed that NAGEL bioceramic disks supported the attachment and proliferation of hBMSCs, and significantly enhanced the bone-related gene expression and WNT signalling pathway of hBMSCs, compared to conventional beta-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic products from NAGEL powders also significantly promoted the proliferation, bone and WNT-related gene expression of hBMSCs. It was also identified that NAGEL bioceramics could bypass the action of the WNT inhibitor (10 μM) to stimulate the selected osteogenic genes in hBMSCs. Our results suggest that NAGEL bioceramics possess excellent in vitro osteostimulation properties. The possible mechanism for the osteostimulation may be directly related to the released Si, Ca and P-containing ionic products from NAGEL bioceramics which activate bone-related gene expression and WNT signalling pathway of hBMSCs. The present study suggests that NAGEL bioceramics are a potential bone regeneration material with significant osteostimulation capacity.
Resumo:
Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. The resulting spinal deformity consists of coronal curvature, hypokyphosis of the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral (IV) discs have been surgically cleared and the disc spaces filled with graft material. Recently a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone has been developed for bone regeneration at load bearing sites. Combined with rhBMP-2, this has been shown to be successful in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft alone. The study aimed to establish a large animal thoracic spine interbody fusion model, develop spine biodegradable scaffolds (PCL) in combination with biologics (rhBMP-2) and to establish a platform for research into spine tissue engineering constructs. Preliminary results demonstrate higher grades of radiologically evident bony fusion across all levels when comparing fusion scores between the 3 and 6 month postop groups at the PCL CaP coated scaffold level, which is observed to be a similar grade to autograft, while no fusion is seen at the scaffold only level. Results to date suggest that the combination of rhBMP-2 and scaffold engineering actively promotes bone formation, laying the basis of a viable tissue engineered constructs.
Resumo:
Development of hypoxia-mimicking bone tissue engineering scaffolds is of great importance in stimulating angiogenesis for bone regeneration. Dimethyloxallyl glycine (DMOG) is a cell-permeable, competitive inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression. The aim of this study was to develop hypoxia-mimicking scaffolds by delivering DMOG in mesoporous bioactive glass (MBG) scaffolds and to investigate whether the delivery of DMOG could induce a hypoxic microenvironment for human bone marrow stromal cells (hBMSC). MBG scaffolds with varied mesoporous structures (e.g. surface area and mesopore volume) were prepared by controlling the contents of mesopore-template agent. The composition, large-pore microstructure and mesoporous properties of MBG scaffolds were characterized. The effect of mesoporous properties on the loading and release of DMOG in MBG scaffolds was investigated. The effects of DMOG delivery on the cell morphology, cell viability, HIF-1α stabilization, vascular endothelial growth factor (VEGF) secretion and bone-related gene expression (alkaline phosphatase, ALP; osteocalcin, OCN; and osteopontin, OPN) of hBMSC in MBG scaffolds were systematically investigated. The results showed that the loading and release of DMOG in MBG scaffolds can be efficiently controlled by regulating their mesoporous properties via the addition of different contents of mesopore-template agent. DMOG delivery in MBG scaffolds had no cytotoxic effect on the viability of hBMSC. DMOG delivery significantly induced HIF-1α stabilization, VEGF secretion and bone-related gene expression of hBMSC in MBG scaffolds in which DMOG counteracted the effect of HIF-PH and stabilized HIF-1α expression under normoxic condition. Furthermore, it was found that MBG scaffolds with slow DMOG release significantly enhanced the expression of bone-related genes more than those with instant DMOG release. The results suggest that the controllable delivery of DMOG in MBG scaffolds can mimic a hypoxic microenvironment, which not only improves the angiogenic capacity of hBMSC, but also enhances their osteogenic differentiation.