969 resultados para hot electron contribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experiments on hot-electron stressing in commercial III-V nitride based heterojunction fight-emitting diodes. Stressing currents ranging from 100 mA to 200 mA were used. Degradations in the device properties were investigated through detailed studies of the I-V characteristics, electroluminescence, Deep-Level Transient Fourier Spectroscopy and flicker noise. Our experimental data demonstrated significant distortions in the I-V characteristics. The room temperature electroluminescence of the devices exhibited 25% decrement in the peak emission intensity. Concentration of the deep-levels was examined by measuring the Deep-Level Transient Fourier Spectroscopy, which indicated an increase in the density of deep-traps from 2.7 x 10(13) cm(-3) to 4.21 x 10(13) cm(-3) at E-1 = E-C - 1.1eV. The result is consistent with our study of 1/f noise, which exhibited up to three orders of magnitude increase in the voltage noise power spectra. Our experiments show large increase in both the interface traps and deep-levels resulted from hot-carrier stressing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The operation of a previously proposed terahertz (THZ) detector is formulated in detail. The detector is based on the hot-electron effect of the 2D electron gas (2DEG) in the quantum well (QW) of a GaAs/AIGaAs heterostructure. The interaction between the THz radiation and the 2DEG, the current enhancement due to hot -electron effect, and the noise performance of the detector are analyzed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

依据Z-scan技术,使用波长532nm的纳秒脉冲,研究了通过聚焦的飞秒脉冲诱导并辅以热处理得到的金纳米粒子析出的玻璃的非线性吸收.观察到金纳米粒子析出的玻璃具有饱和吸收特性.根据局域场效应,对实验结果拟合,得到在接近表面等离子体共振激发情况下,金纳米粒子三阶极化率虚部分别为Imχm^(3)=5.7×10^-7esu.玻璃样品中金纳米粒子的非线性响应主要起源于热电子贡献。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain Au and Ag nanoparticles precipitated in glasses by irradiation of focused femtosecond pulses, and investigate the nonlinear absorptions of the glasses by using Z-scan technique with ns pulses at 532 nm. We observe the saturable absorption behavior for An nanoparticles precipitated glasses and the reverse saturable ones for Ag ones. We also obtain, by fitting to the experimental results in the light of the local field effect near and away from the surface plasmon resonance, chi(m)((3)) = 4.5 x 10(-7) and 5.9 x 10(-8) esu for m the imaginary parts of the third-order susceptibilities for Au and Ag nanoparticles, respectively. The nonlinear response of Au nanoparticles in the glass samples arises mainly from the hot-electron contribution and the saturation of the interband transitions near the surface plasmon resonance, whereas that of Ag nanoparticles in the glass samples from the interband transitions. These show that the obtained glasses can be used as optoelectronic devices suiting for different demands. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated megaampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (10(18)-10(19)) W/cm(2) was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate 30 times enhanced flux of relativistic electrons by a silicon nanowire coated target excited by 30 fs, 800 nm laser pulses at an intensity of 3 x 10(18) W cm(-2). A measurement of the megaampere electron current via induced megagauss magnetic field supports the enhancement feature observed in the electron energy spectrum. The relativistic electrons generated at the front of nanowire coated surface are shown to travel efficiently over 500 mu m in the insulating substrate. The enhanced hot electron temperature is explained using a simple model and is supported by recent simulations. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729010]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The subject of this thesis is the measurement and interpretation of thermopower in high-mobility two-dimensional electron systems (2DESs). These 2DESs are realized within state-of-the-art GaAs/AlGaAs heterostructures that are cooled to temperatures as low as T = 20 mK. Much of this work takes place within strong magnetic fields where the single-particle density of states quantizes into discrete Landau levels (LLs), a regime best known for the quantum Hall effect (QHE). In addition, we review a novel hot-electron technique for measuring thermopower of 2DESs that dramatically reduces the influence of phonon drag.

Early chapters concentrate on experimental materials and methods. A brief overview of GaAs/AlGaAs heterostructures and device fabrication is followed by details of our cryogenic setup. Next, we provide a primer on thermopower that focuses on 2DESs at low temperatures. We then review our experimental devices, temperature calibration methods, as well as measurement circuits and protocols.

Latter chapters focus on the physics and thermopower results in the QHE regime. After reviewing the basic phenomena associated with the QHE, we discuss thermopower in this regime. Emphasis is given to the relationship between diffusion thermopower and entropy. Experimental results demonstrate this relationship persists well into the fractional quantum Hall (FQH) regime.

Several experimental results are reviewed. Unprecedented observations of the diffusion thermopower of a high-mobility 2DES at temperatures as high as T = 2 K are achieved using our hot-electron technique. The composite fermion (CF) effective mass is extracted from measurements of thermopower at LL filling factor ν = 3/2. The thermopower versus magnetic field in the FQH regime is shown to be qualitatively consistent with a simple entropic model of CFs. The thermopower at ν = 5/2 is shown to be quantitatively consistent with the presence of non-Abelian anyons. An abrupt collapse of thermopower is observed at the onset of the reentrant integer quantum Hall effect (RIQHE). And the thermopower at temperatures just above the RIQHE transition suggests the existence of an unconventional conducting phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. The resonant tunneling current is superimposed on the thermal current, and together they make up the total electron transport in devices. Steps in current-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77 or 300 K, and thus resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect. (c) 2006 The Electrochemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hot electrons excited from the valence band by linearly polarized laser light are characterized by certain angular distributions in momenta. Owing to such angular distributions in momenta, the photoluminescence from the hot electrons shows a certain degree of polarization. A theoretical treatment of this effect observed in the photoluminescence in quantum wells is given, showing that the effect depends strongly on heavy and light hole mixing. The very large disparity between the experimentally observed and theoretically expected values of the degree of polarization in the hot-electron photoluminescence suggests the presence of random quasielastic scattering. The effects of such additional scattering and the presence of a perpendicular magnetic field are incorporated into the theory. it is shown that the measurements of the degree of polarization observed in the hot electron photoluminescence, with and without an applied perpendicular magnetic field can serve to determine the time constants for both LO-phonon inelastic and random quasielastic scattering. As an example, these time constants are determined for the experiments reported in the literature.