867 resultados para high speed countercurrent chromatography
Resumo:
High-speed countercurrent chromatography (HSCCC) is a leading method for the fast separation of natural products from plants. It was used for the preparative isolation of two flavone monoglucosides present in the capitula of Eriocaulon ligulatum (Veil.) L.B.Smith (Eriocaulaceae). This species, known locally as botão-dourado, is exported to Europe, Japan and North America as an ornamental species, constituting an important source of income for the local population of Minas Gerais State, Brazil. The solvent system, optimized in tests prior to the HSCCC run, consisted of the two phases of the mixture ethyl acetate: n-propanol: water (140:8:80, v/v/v), which led to the successful separation of 6-methoxyluteolin-7-O-β-D-allopyranoside and 6-methoxyapigenin-7-O-β-D-allopyranoside in only 3 hours. The two flavonoids were identified by NMR (1-D and 2-D) and ESI-MS, comparing their spectra with published data.
Separation of the toxic zierin from Zollernia ilicifolia by high speed countercurrent chromatography
Resumo:
Preliminary pharmacological assays of the 70% methanol extract from the leaves of the Brazilian medicinal plant Zollernia ilicifolia Vog. (Fabaceae) showed analgesic and antiulcerogenic effects. Previous analyses have shown that this extract contains, besides flavonoid glycosides and saponins, a toxic cyanogenic glycoside. Flavonoids and saponins are compounds reported in literature with antiulcerogenic activity. In this work, we developed a methodology to separate the cyanogenic glycoside from these compounds in order to obtain enough amount of material to perform pharmacological assays. The cyanogenic glycoside zierin (2S)-β-D-glucopyranosyloxy-(3-hydroxy-phenyl)- acetonitrile was separated from the other components by high speed countercurrent chromatography (HSCCC). The solvent system used was composed of chloroform-methanol-n-propanol-water (5:6:1:4, v/v/v/v). This technique led to the separation of zierin from the possible active compounds of Zollernia ilicifolia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The natural naphthopyranones paepalantine (1), paepalantine-9O-β-D-glucopyranoside (2) and paepalantine-9-O-β-D-allopyranosyl-(1→6)-O-β-D-glucopyranoside (3) were separated in a preparative scale from the ethanolic extract of the capitula of Paepalanthus bromelioides by high-speed counter-current chromatography (HSCCC). The solvent system used was composed of water-ethanol-ethyl acetate-hexane (10:4:10:4, v/v/v/v). This technique led to the separation of the three different naphthopyranone glycosides in pure form in approximately 7 hours. Paepalantine showed a good antioxidant activity when assayed by the DPPH radical spectrophotometric assay.
Resumo:
Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler. The optimization of parameters was carried out using an orthogonal test L-9 (3)(4) including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55 degrees C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6-aldehydo-isoophiopogonone A, and 6-formyl-isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6-aldehydo-isoophiopogonone A (98.3% purity) and 13.5 mg of 6-formyl-isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI-MS and NMR analysis.
Resumo:
High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale has been successfully applied to the separation of bioactive flavonoid compounds, liquiritigenin and isoliquiritigenin in one step from the crude extract of Glycyrrhiza uralensis Risch. The HSCCC was performed using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (2:2:1:0.6:2, v/v). Yields of liquiritigenin (98.9% purity) and isoliquiritigenin (98.3% purity) obtained were 0.52% and 0.32%. Chemical structures of the purified liquiritigenin and isoliquiritigenin were identified by electrospray ionization-MS (ESI-MS) and NMR analysis. (c) 2005 Published by Elsevier B.V.
Resumo:
The methanolic extract of the leaves of the medicinal plant Byrsonima crassa (Malpighiaceae) contain flavonoids with antioxidant activity. They were separated in a preparative scale using high-speed counter-current chromatography. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80 (v/v/v)) and led to a successful separation between monoglucosilated flavonoids (quercetin-3-O-alpha-L-arabinoside, quercetin-3-O-beta-D-galactoside) and the biflavonoid amentoflavone in only 3.5 h. The purities of quercetin-3-O-alpha-L-arabinoside (95 mg), quercetin-3-O-beta-D-galactoside (16 mg) and the biflavonoid amentoflavone (114 mg) were all isolated at purity over 95%. Identification was performed by H-1 NMR, C-13 NMR and UV analyses. (C) 2004 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method for the isolation of three compounds from the infusion of leaves of Byrsonima basiloba A. Juss. by high-speed counter-current chromatography (HSCCC) was developed. This technique led to the separation of a novel compound, quercetin 3-O-alpha-L-rhamnopyranosyl-(1 -> 3)-O-[alpha-L-rhamnopyranosyl-(1 -> 6)]-beta-D-allopyranoside, and two known compounds quercetin3-O-(X-L-rhamnopyranosyl-(1 -> 6)-beta-D-galactopyranoside and (+)-catechin in 4 h with purities of over 92%. The structures of the compounds were determined by one- and two-dimensional NMR spectroscopy and HPLC.
Resumo:
High-speed counter-current chromatography was applied to the preparative separation and purification of naphthopyranone glycosides from a crude 70% ethanolic extract of the capitula of Paepalanthus microphyllus. The solvent system used was composed of water-ethanol-ethyl acetate-hexane (10:4:10:4, v/v). This technique led to the separation of four different naphthopyranone glycosides in pure form in only 7 h. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
With using short capillary column packed with porous and non-porous ODS stationary phases, high speed separation of 6 neutral aromatic compounds within 36 s by capillary electrochromatography (CEC) has been performed. Good reproducibility of the migration times for those solutes in high speed CEC was observed with RSD less than 1%. Both the linear velocity of EOF and the current linearly increases with the applied voltage, which means that the thermal effect by Joule heating was small. However, the capacity factor of solutes was found to decrease with the increase of the applied voltage, which was caused by the fact that about several seconds needed for the increase of voltage from 0 to applied value on a commercial CE instrument made larger contributions to the migration times of the early eluted compounds than those of lately eluted ones during high speed CEC, and voltage effect would increase with the higher applied voltage used. The linear relationship between the logarithm of capacity factor and the number of carbon for homologous compounds was observed, and positive value of slope means that the hydrophobicity of solutes is one of the main contribution factors to retention in high speed CEC packed with ODS stationary phases.