930 resultados para heavy-ion cancer therapy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The status of heavy-ion cancer therapy has been reviewed. The existing and constructing heavy-ion beam facilities for cancer therapy in the world are introduced. The first clinical trials of superficially placed tumor therapy at heavy ion research facility in Lanzhou (HIRFL) are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

癌症是现代医学的难题,一直危害着人类的健康。放射治疗是癌症治疗的有效手段之一。由于重离子束在物理学和生物学性质上所具有的优势,它已成为放疗用的最佳射线。简述了重离子治癌的发展历程、现状以及特点,详细讨论了在医学物理和放射生物学研究领域值得关注的若干热点问题。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the framework of the pilot heavy-ion therapy facility at GSI equipped with an active beam delivery system of advanced raster scanning technique, a feasibility study on actively conformal heavy-ion irradiation to moving tumors has been experimentally conducted. Laterally, real-time corrections to the beam scanning parameters by the raster scanner, leading to an active beam tracing, compensate for the lateral motion of a target volume. Longitudinally, a mechanically driven wedge energy degrader (called depth scanner) is applied to adjust the beam energy so as to locate the high-dose Bragg peak of heavy ion beam to the slice under treatment for the moving target volume. It has been experimentally shown that compensations for lateral target motion by the raster scanner and longitudinal target shift by the depth scanner are feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time the physical properties of therapeutic carbon-ion beam supplied by, the shallow-seated tumor therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL) are measured. For a 80.55MeV/u C-12 ion beam delivered to the therapy terminal, the homogeneity of irradiation fields is 73.48%, when the beam intensity varied in the range of 0.001-0.1nA (i.e. 1 X 10(6) - 1 X 10(8) particles per second). The stability of the beam intensity within a few minutes is estimated to be 80.87%. The depth-dose distribution of the beam at the isocenter of the therapy facility is measured, and the position of the high-dose Bragg peak is found to be located at the water-equivalent depth of 13.866mm. Based on the relationship between beam energy and Bragg peak position, the corresponding beam energy at the isocenter of the therapy terminal is evaluated to be 71.71MeV/u for the original 80.55MeV/u C-12 ion beam, which consisted basically with calculation. The readout of the previously-used air-free ionization chamber regarding absorbed dose is calibrated as well in this experiment. The results indicate that the performance of the therapy facility should be optimized further to meet the requirements of clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main ion-beam acceleration facilities and research activities at the Institute of Modern Physics (IMP), Chinese Academy of Sciences are briefly introduced. Some of the biomedical research with heavy ions such as heavy-ion biological effect, basic research related to heavy-ion cancer therapy and radiation breeding at the IMP accelerators are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The passive beam delivery system in the superficially-placed tumor therapy terminal at Heavy Ion Researc h Facility in Lanzhou (HIRFL), which includes two orthogonal dipole magnets as scanning system, a motor-driven energy degrader as range-shifter, series of ridge filters as range modulator and a multileaf collimator, is introduced in detail. The capacities of its important components and the whole system have been verified experimentally. The tests of the ridge filter for extending Bragg peak and the range shifter for energy adjustment show both work well. To examine the passive beam delivery system, a beam shaping experiment were carried out, simulating a three-dimensional (3D) conformal irradiation to a tumor. The encouraging experimental result confirms that 3D layer-stacking conformal irradiation can be performed by means of the passive system. The validation of the beam delivery system establishes a substantial basis for upcoming clinical trial for superficially-placed tumors with heavy ions in the therapy terminal at HIRFL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic algorithms of biological effective dose optimization and dose distribution on CT image for the heavy ion therapy project at the Institute of Modern Physics(IMP),Chinese Academy of Sciences(CAS) are reported in this paper.Firstly,biological effective dose optimization is conducted in water.According to the relationship between CT number and water equivalent path length,an integral algorithm is used to calculate the average dose within a pixel and then the dose distribution in tissue is derived.Secondly...中文文摘:针对深部肿瘤重离子治疗临床试验的需求,首先在水介质中进行生物有效剂量的优化计算,然后根据CT图像中像素CT值与水等效长度转换系数之间的关系,结合水中的深度剂量分布曲线对每个像素进行积分得到CT图像上的生物有效剂量分布。同时介绍了基于被动式束流配送系统适形照射时的剂量确定方式,并提出二维适形放疗也应使用分层照射方式以适应治疗时的不同要求。这些方法适合目前及今后在IMP进行的重离子治癌临床试验研究中治疗计划系统的需要。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本论文根据已有的设计方案及图纸,验证设计方案的可行性。主要内容如下:第一,根据公式估算深层治癌束运线各段的真空度,并用VAKTRAK程序模拟出压力分布曲线;第二,运用ANSYS程序对烘烤段各真空管道,尤其是盒形真空室(二极铁真空室)进行力学分析,验证设计尺寸是否可行;第三,根据力学分析,确定超薄壁拱形真空管道的波宽和波高,能够满足使用要求。第四,参考德国GSI有关资料,对膜窗材料进行了计算和验证,并成功的运用到实际中去。 目前,深层治癌束运线真空系统已经安装完毕,经过抽空、检漏,各元件均已达到设计要求,非烘烤段的真空度已达标,烘烤段已达到烘烤前应有的真空度,现正在安装烘烤外套及烘烤控制装置

Relevância:

100.00% 100.00%

Publicador:

Resumo:

近代物理所依托兰州重离子冷却储存环(HIRFL-CSR)开展重离子治癌研究。在重离子治癌过程中,需要对束流位置十分精确的控制。本文实现了精确控制重离子束对肿瘤实现三维适形扫描。 对肿瘤切片方向定位采用主动磁扫描方式,通过控制X、Y 扫描铁电源实现束流对肿瘤一层切片中各点的扫描,在治疗过程中需要实现位置变化与辐照剂量的联动。为满足束流位置切换时扫描铁电源的阶跃响应过程,采用了一种新的加速器电源控制方式,通过控制频率变化实现扫描铁电源阶跃响应过程。该方法具有精度高、参数少、响应速度快和实时性好的特点。本文提出了扫描铁电源电压控制的数学模型和实现结构,通过FPGA+DSP+DDS的硬件平台实现该电源控制方法。最终完成了对扫描铁电源高精度的控制。 肿瘤深度方向定位实质上是重离子束流Bragg峰的定位。Bragg峰与束流能量的关系要求重离子束在不同能量间切换,因而需要加速器实现变能加速。本文设计完成了适应变能加速的高频控制器,介绍了高频控制器实现方法,从而满足不同深度肿瘤切片对束流能量的要求。 核心及创新点:(1)实现重离子治癌过程中束流位置和剂量的联动; (2)基于频率调节的扫描铁电源控制器; (3)满足变能加速的高频控制器 从现场的测试和应用结果表明位置控制系统达到了设计要求

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The goal in designing beam-modulating devices for heavy ion therapy is to achieve uniform biological effects across the spread-out Bragg peak (SOBP). To achieve this, a mathematical model of Bragg peak movement is presented. The parameters of this model have been resolved with Monte Carlo method. And a rotating wheel filter is designed basing on the velocity of the Bragg peak movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了中国科学院近代物理研究所重离子治癌装置的安装定位测量技术和方法。利用激光跟踪仪通过控制网的建立,和多重坐标系的转换,使最后的磁铁安装径向相对误差不超过±(0.05-0.1)mm,真空管道的横向及竖向精度也达到了±(0.1-0.2)mm。