815 resultados para heavier lanthanides
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
Solid-state Ln-4-MeO-Bz compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, phase transition, coordination mode, structure, thermal behaviour and thermal decomposition of the isolated compounds. The phase transition observed in the some compounds has been reported for the first time. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Solid-state Ln(2-MeO-BP) compounds, where Ln stands for trivalent Eu to Lu and Y(III) and 2-MeO-BP (which is 2-methoxybenzylidenepyruvate) have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffraction, infrared spectroscopy and other methods of analysis were used to characterize and to study these compounds. on the base of the obtained results an Ln(2MeO-BP)(3)center dot H2O general formula can be established.
Resumo:
Solid-state heavier lanthanides fumarates compounds have been synthesized, and the compounds were characterized by employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), TG coupled to FTIR, elemental analysis, and complexometry. On heating, the dehydration occurs in a single and two consecutive steps and the thermal decomposition of the anhydrous compounds occurs in consecutive and/or overlapping steps, with formation of the respective oxides: Tb4O7 and Ln2O3 (Ln=Dy to Lu). The results also led to information about composition, thermal behavior, and the type of coordination of the isolated compounds. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Phase diagrams for ternary Ln2O3-H2O-CO2 systems for the entire lanthanide series (except promethium) were studied at temperatures in the range 100–950 °C and pressures up to 3000 bar. The phase diagrams obtained for the heavier lanthanides are far more complex, with the appearance of a number of stable carbonate phases. New carbonates isolated from lanthanide systems (Ln ≡ Tm, Yb, Lu) include Ln6(OH)4(CO3)7, Ln4(OH)6-(CO3)3, Ln2O(OH)2CO3, Ln6O2(OH)8(CO3)3 and Ln12O7(OH)10(CO3)6. Stable carbonate phases common to all the lighter lanthanides are hexagonal LnOHCO3 and hexagonal Ln2O2CO3. Ln2(CO3)3• 3H2O is stable from samarium onwards and orthorhombic LnOHCO3 is stable from gadolinium onwards. On the basis of the appearance of stable carbonates, four different groups of lanthanides were established: lanthanum to neodymium, promethium to europium, terbium to erbium and thulium to lutetium. Gadolinium is the connecting element between groups II and III. This is in accordance with the tetrad classification for f transition elements.
Resumo:
Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates of the general formula M(DMSO)n(NO3)3 where M = La, Ce, Pr, Nd, Sm or Gd; n = 4 and M = Y, Ho or Yb; n = 3 have been isolated and characterized. The i.r. data besides excluding the presence of D3h nitrate, reveal co-ordination through the oxygen atom of the dimethyl sulphoxide. The complexes are monomeric in acetonitrile. Molecular conductance data in acetone, acetonitrile, dimethyl formamide and dimethyl sulphoxide suggest a co-ordination number of eight for the lighter lanthanides and seven for yttrium and the heavier lanthanides.
Resumo:
Lanthanide(III) complexes with N-donor ex-tractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr3+, Eu3+, Tb3+, and Yb3+ complexes of 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin3-yl)-1,10-phenanthroline(CyMe4-BTPhen) and the Pr3+, Eu3+, and Tb3+ complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotria-zin-3-yl)-2,2′-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two ofthe tetra-N-donor ligands to each Ln3+ ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln3+/LN4‑donor species (Ln = Pr3+, Eu3+, Tb3+) in methanol when the N-donor ligand was in excess. When the Ln3+ ion was in excess, evidence for formation of a 1:1 Ln3+/LN4‑donor complex species was observed. Luminescent lifetime studies of mixtures of Eu3+ with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu3+ and Tb3+ species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln3+/LN‑donor species.
Resumo:
Solid-state Ln(L)(3) compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and L is 2-methoxybenzoate have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results provided information on the composition, dehydration, coordination mode, structure, thermal behaviour and thermal decomposition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid state Ln-4-Me-BP compounds, where Ln stands for heavier trivalent lanthanides (gadolinium to lutetium) and yttrium(III) and 4-Me-BP is 4-methylbenzylidenepyruvate (CH3-C6H4-CH=CH-COCOO-), have been synthesized. Elemental analysis, complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterise and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, ligand's denticity, thermal stability and thermal decomposition. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Solid-state compounds of general formula LnL(3).2H(2)O, where Ln is heavier trivalent lanthanides and yttrium, L is 4-chlorobenzylidenepyruvate have been synthetised.On heating these compounds decompose in steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of oxochloride (Eu, Gd); mixture of oxide and oxochloride that decrease with increasing of atomic number of metal (Tb-Tm); or oxide (Yb, Lu, Y) as final residue, up to 900degreesC. The dehydration enthalpies found for terbium, holmium, ytterbium and yttrium compounds were: 34.93, 42.40, 57.39 and 62.24 kJ mol(-1), respectively.
Resumo:
Phase diagrams for Nd2O3-H2O-CO2 and Gd2O3-H2O-CO2 systems at 1500 atm are given along with the results of selected runs in La, Sm and Eu systems. The stable phases in systems of La and Nd, are Ln(OH)CO3-B, Ln2O2CO3-II and LnOOH, in addition to the Ln(OH)3 phase at extremely low partial pressures of CO2 in the system. The systems become more and more complex with decreasing ionic radi and the number of stable carbonate phases increases. Ln2(CO3)3 · 3H2O orthorhombic (tengerate-like phase) is stable from Sm to Gd in addition to the other phases. The Gd(OH)CO3-A (ancylite-like phase) is hydrothermally stable at XCO2 greater-or-equal, slanted 0.5 while its hexagonal polymorph, Gd(OH)CO3-B is stable at low partial pressures of CO2 in the system.
Resumo:
In this mini-review, I discuss some recent work on the stereochemistry and bonding of lone pairs of electrons in divalent compounds of the heavier carbon group elements (SnII, PbII) and in trivalent compounds of the heavier nitrogen group elements (BiIII). Recently developed methods that permit the real-space visualization of bonding patterns on the basis of density functional calculations of electronic structure, reveal details of the nature of s electron lone pairs in compounds of the heavier main group elements – their stereochemistry and their inertness (or lack thereof). An examination of tetragonal P4/nmm SnO, a-PbO and BiOF, and cubic Fm3m PbS provides a segue into perovskite phases of technological significance, including ferroelectric PbTiO3 and antiferroelectric/piezoelectric PbZrO3, in both of which the lone pairs on Pb atoms play a pivotal rôle.
Resumo:
We consider the possibility that the heavier CP-even Higgs boson (H-0) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, nonuniversal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson (h(0)), which is identified with the 126 GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale, such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale. The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.