916 resultados para h2o2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the differential sensitivity of sugarcane genotypes to H2O2 in root medium. As a hypothesis, the drought tolerant genotype would be able to minimize the oxidative damage and maintain the water transport from roots to shoots, reducing the negative effects on photosynthesis. The sugarcane genotypes IACSP94-2094 (drought tolerant) and IACSP94-2101 (drought sensitive) were grown in a growth chamber and exposed to three levels of H2O2 in nutrient solution: control; 3mmolL(-1) and 80mmolL(-1). Leaf gas exchange, photochemical activity, root hydraulic conductance (Lr) and antioxidant metabolism in both roots and leaves were evaluated after 15min of treatment with H2O2. Although, root hydraulic conductance, stomatal aperture, apparent electron transport rate and instantaneous carboxylation efficiency have been reduced by H2O2 in both genotypes, IACSP94-2094 presented higher values of those variables as compared to IACSP94-2101. There was a significant genotypic variation in relation to the physiological responses of sugarcane to increasing H2O2 in root tissues, being root changes associated with modifications in plant shoots. IACSP94-2094 presented a root antioxidant system more effective against H2O2 in root medium, regardless H2O2 concentration. Under low H2O2 concentration, water transport and leaf gas exchange of IACSP94-2094 were less affected as compared to IACSP94-2101. Under high H2O2 concentration, the lower sensitivity of IACSP94-2094 was associated with increases in superoxide dismutase activity in roots and leaves and increases in catalase activity in roots. In conclusion, we propose a general model of sugarcane reaction to H2O2, linking root and shoot physiological responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general mechanism for the photodegradation of polyethyleneglycol (PEG) by H2O2/UV was determined studying the photooxidation of small model molecules, like low molecular weight ethyleneglycols (tetra-, tri-, di-, and ethyleneglycol). After 30 min of irradiation the average molar mass (Mw) of the degradated PEG, analysed by GPC, fall to half of its initial value, with a concomitant increase in polydispersitivity and number of average chain scission (S), characterizing a random chain scission process yielding oligomers and smaller size ethyleneglycols. HPLC analysis of the photodegradation of the model ethyleneglycols proved that the oxidation mechanism involved consecutive reactions, where the larger ethyleneglycols gave rise, successively, to smaller ones. The photodegradation of ethyleneglycol lead to the formation of low molecular weight carboxylic acids, like glycolic, oxalic and formic acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yerba mate (Ilex paraguariensis) is rich in several bioactive compounds that can act as free radical scavengers. Since oxidative DNA damage is involved in various pathological states such as cancer, the aim of this study was to evaluate the antioxidant activity of mate tea as well as the ability to influence DNA repair in male Swiss mice. Forty animals were randomly assigned to four groups. The animals received three different doses of mate tea aqueous extract, 0.5, 1.0 or 2.0 g/kg, for 60 days. After intervention, the liver, kidney and bladder cells were isolated and the DNA damage induced by H2O2 was investigated by the comet assay. The DNA repair process was also investigated for its potential to protect the cells from damage by the same methodology. The data presented here show that mate tea is not genotoxic in liver, kidney and bladder cells. The regular ingestion of mate tea increased the resistance of DNA to H2O2-induced DNA strand breaks and improved the DNA repair after H2O2 challenge in liver cells, irrespective of the dose ingested. These results suggest that mate tea could protect against DNA damage and enhance the DNA repair activity. Protection may be afforded by the antioxidant activity of the mate tea's bioactive compounds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced oxidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as a hydroxyl radical self-consumer and thus a decrease of the system`s oxidizing power happens. The determination of the process critical point (maximum amount of hydrogen peroxide to be added) was performed through a ""thorough mapping"" or discretization of the target region, founded on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarizes the result of a degradation test of two azo-reactive dyes (Reactive Blue 214, Reactive Red 243) under UV irradiation in the presence of H2O2. Five different doses of hydrogen peroxide (0 mM, 5 mM, 10 mM, 20 mM and 30 mM) at constant initial concentration of the substrate (100 mg/L) were used. The radiation source were three 15 W-lamps. Complete destruction of the color of the solutions was attained in 40-50 min of irradiation. UV/H2O2 proved capable of complete discoloration and degradation of the above azo reactive dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the influence of effluent organic matter (EfOM) on micropollutants removal by ozone and UV/H2O2. To perform the experiments, deionized water and municipal secondary effluents (SE) were artificially contaminated with atrazine (ATZ) and treated by the two proposed methods. ATZ concentration, COD and TOC were recorded along the reaction time and used to evaluate EfOM effect on the system efficiency. Results demonstrate that the presence of EfOM can significantly reduce the micropollutant removal rate due to competition of EfOM components to react with radicals and/or molecular ozone. The hydroxyl radical scavenging caused by EfOM was quantified as well as the contribution of molecular ozone and �OH radicals during the ozonation of SE. EfOM components promoted higher inhibition of ATZ oxidation by hydroxyl radicals than by molecular ozone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the electrochemical degradation of the ranitidine was developed using an electrochemical reactor with a gas diffusion electrode (GDE) as cathode. The electrolysis experiments was performed at constant current (1 < A < 10) and flow rate of 200 L h-1. The process of drug degradation, chemical/electrochemical and electro-Fenton ways, using electrochemical reactor showed best efficiency at current values of > 4 A. The process reached a production of 630 mg L-1 of the H2O2 at 7 A. The ranitidine concentrations was reduced in 99.9% (HPLC) and chemical oxygen demand (COD) was reduced in 86.7% by electro-Fenton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a degradation study of the anti-inflammatory sodium diclofenac in aqueous medium using an electro-chemical flow reactor with a gas diffusion electrode as cathode. Two degradation processes were compared: by H2O2 electro-generated and H2O2 electro-generated/Fe(II). Concentration of sodium diclofenac was determined during the experiments by HPLC. The changes in chemical oxigen demand (COD) were also evaluated. Under the specific reaction conditions, 350 mg L-1 of H2O2 was electro-generated and 99.2% of sodium diclofenac was degradated, with 27.4% COD reduction. At the same conditions, but using Fe(II), drug degradation was 99.4% and the COD reduction was 63.2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, composites based on activated carbon/iron oxide (AC/Fe) were prepared in two different proportions (AC/Fe 5/1 and 1/1) and evaluated in the removal of the organic dye methylene blue (MB). Physical-chemical properties of the composites were determined by X-ray diffraction (XRD), adsorption/dessorption of N2 isotherm, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). Results showed that goethite (α- FeOOH), with nanometer particle size, was formed over carbon surface for both composites. These materials showed high efficiency to remove MB from solution by combined adsorption and oxidation process. The AC/Fe 1/1 showed to be more active in (MB) oxidation then AC/Fe 5/1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food industries employ a lot of synthetic dyes in their products. Most of these dyes are very stable face to the conventional treatments. This work studied the use of advanced oxidation process (AOP) as an alternative to the conventional ones to degrade a synthetic food effluent (photolysis and UV/H2O2 in continuous reactor). The more efficient process was the UV/H2O2 and it presented decoloration and degradation energetic efficiency values equal to 30.775 kWh m-3 and 269.909 kWh m-3, respectively. The color reduction was 96.4% and COD decrease was 38.56%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several problems are involved the treatment plants of textile effluents, mainly the low efficiency of color removal. This paper presents an alternative of post-treatment by UV/H2O2 process, for color removal in biologically treated textile effluents. The tests were performed in a photochemical reactor and samples were taken at different times to perform analyses. Using 250 mgH2O2.L-1, 96% removal of color was verified, indicating the dyes degradation. A reduction of 84% of aromatics compounds, 90% of TSS removal, and a further reduction of the organic fraction were observed, demonstrating that the process is effective as a post-treatment of effluents from textile industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the development of GDE for electrogeneration of H2O2 and their application in the degradation process of Reactive Blue 19 dye. GDE produced by carbon black with 20% polytetrafluoroethylene generated up to 500 mg L-1 of H2O2 through the electrolysis of acidic medium at -0.8 V vs Ag/AgCl. Reactive Blue 19 dye was degraded most efficiently with H2O2 electrogenerated in the presence of Fe(II) ions, leading to removal of 95% of the original color and 39% of TOC at -0.8 V vs Ag/AgCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodes modified with poly(5-amino-1-naphthol)/Prussian blue (poly(5-NH2-1-NAP)/PB) hybrid films are able to electrochemically reduce H2O2 in medium containing an excess of Na+ cations. This is an important advantage for biosensing applications over electrodes in which only conventionally (electro) deposited Prussian blue is present. Consequently, the aim of this work was to examine the application of templates of ordered arrays of colloidal poly(styrene) spheres (800, 450 and 100 nm in diameter) to produce inverse opal structures of poly(5-NH2-1-NAP)/PB hybrid platforms, in an effort to study the influence of the increase in surface area/volume ratio and higher exposition of the mediator active sites on material performance during H2O2 determination employing the different sized porous structures. Moreover, since the accentuated hydrophilic character of poly(5-NH2-1-NAP)/PB also allows H2O2 electrochemical reduction in inner active sites, issues concerning the amount of mediator electrodeposited on the electrode were also reflected in the observed results.