984 resultados para glycerol 2 phosphate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le taux de triacylglycerol (TAG) qui s`accumule dans le tissu adipeux depend de 2 mecanismes opposes : la lipogenese et la lipolyse. Nous avons montre anterieurement que le poids des lipides du tissu adipeux de l`epididyme (EPI) de meme que leur taux augmentent chez les rats en croissance soumis a une diete hypoproteique hyperglucidique (HPHG) pendant 15 jours. La presente etude a eu pour but d`examiner les voies impliquees dans la lipogenese et la lipolyse qui regulent l`accumulation des lipides dans le tissu. On a evalue in vivo la synthese de novo des acides gras, qui s`est revelee similaire chez les rats soumis a la diete HPHG ou a une diete temoin; toutefois, chez les rats soumis a la diete HPHG, une diminution de l`activite de la lipoproteine lipase dans le tissus adipeux de l`EPI a ete observee, ce qui laisse croire a une diminution de la capture des acides gras des lipoproteines circulantes. La diete HPHG n`a eu aucun effet sur la synthese du glycerol-3-phosphate (G3P) par la glycolyse ou la glyceroneogenese. L`activite de la glycerokinase, c.-a-d. la phosphorylation du glycerol issu de l`hydrolyse du TAG endogene pour former le GP3, n`a pas ete modifiee non plus par la diete HPHG. A l`oppose, les adipocytes des rats HPHG stimules par la norepinephrine ont eu une plus faible reponse lipolytique, meme si le taux lipolytique basal des adipocytes a ete similaire chez les 2 groupes. Ainsi, les resultats donnent a penser que la diminution de l`activite lipolytique stimulee par la norepinephrine joue un role essentiel dans l`augmentation du TAG observee dans le tissu adipeux de l`EPI des animaux HPHG, probablement en perturbant le processus d`activation de la lipolyse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the GPD2 gene from Saccharomyces cerevisiae, which codifies for the enzyme glycerol-3-phosphate dehydrogenase (GPDH), was cloned from the pPICZ-alpha expression vector and used with the purpose of inducing the extracellular expression of the glycerol-3-phosphate dehydrogenase under the control of the methanol-regulated AOX promoter. The presence of the GPD2 insert was confirmed by PCR analysis. Pichia pastoris X-33 (Mut(+)) was transformed with linearized plasmids by electroporation and transformants were selected on YPDS plates containing 100 mu g/mL of zeocin. Several clones were selected and the functionality of this enzyme obtained in a culture medium was assayed. Among the mutants tested, one exhibited 3.1 x 10(-2) U/mg of maximal activity. Maximal enzyme activity was achieved at 6 days of growth. Medium composition and pre-induction osmotic stress influenced protein production. Pre-induction osmotic stress (culturing cells in medium with either 0.35 M sodium chloride or 1.0 M sorbitol for 4h prior to induction) led to an increase in cell growth with sorbitol and resulted in a significant increase in GPDH productivity with sodium chloride in 24h of induction approximately fivefold greater than under standard conditions (without pre-induction). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physiological state of yeast cells changes during culture growth as a consequence of environmental changes (nutrient limitations, pH and metabolic products). Cultures that grow exponentially are heterogeneous cell populations made up of cells regulated by different metabolic and/or genetic control systems. The strain of baker's yeast selected by plating commercial compressed yeast was used for the production of glycerol-3- phosphate dehydrogenase. Glycerol-3-phosphate dehydrogenase (GPD) has been widely used in the enzyme assays with diverse compounds of industrial interest, such as glycerol or glycerol phosphate, as well as a number of important bioanalytical applications. Each cell state determines the level of key enzymes (genetic control), fluxes through metabolic pathways (metabolic control), cell morphology and size. The present study was carried out to determine the effects of environmental conditions and carbon source on GPD production from baker's yeast. Glucose, glycerol, galactose and ethanol were used as carbon sources. Glycerol and ethanol assimilations required agitation, which was dependent on the medium volume in the fermentation flask for the greatest accumulation of intracellular GPD. Enzyme synthesis was also affected by the initial pH of the medium and inoculum size. The fermentation time required for a high level of enzyme formation decreased with the inoculum size. The greatest amount of enzyme (0.45 U/ml) was obtained with an initial pH of 4.5 in the medium containing ethanol or glycerol. The final pH was maintained in YP-ethanol, but in the YP-glycerol the final pH increased to 6.9 during growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The membrane-associated enzyme L-α-glycerol-3-phosphate oxidase (GlpO) of Mycoplasma mycoides subs. mycoides (Mmm), the causal agent of contagious bovine pleuropneumonia (CBPP) has been identified as a virulence factor responsible for the release of toxic by-products such as H2O2 that mediate host cell injury. Since CBPP pathogenesis is based on host inflammatory reactions, we have determined the capacity of recombinant GlpO to generate in vivo protective responses against challenge in immunized cattle. We also investigated whether sera raised against recombinant GlpO in cattle and mice inhibit production of H2O2 by Mmm. Immunization of cattle with recombinant GlpO did not protect against challenge with a virulent strain of Mmm. Further, although both murine and bovine antisera raised against recombinant GlpO detected recombinant and native forms of GlpO in immunoblot assays with similar titres, only murine antibodies could neutralize GlpO enzymatic function. The data raise the possibility that Mmm has adapted to evade potential detrimental antibody responses in its definitive host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insertion of the blood retrotransposon into the untranslated region of exon 7 of the sn-glycerol-3-phosphate dehydrogenase-encoding gene (Gpdh) in Drosophila melanogaster induces a GPDH isozyme-GPDH-4-and alters the pattern of expression of the three normal isozymes-GPDH-1 to GPDH-3. The process of transcript terminus formation inside the retrotransposon insertion reduces the level of the Gpdh transcript that contains exon 8 and increases the level of the transcript that contains exons 1-7. The induced GPDH-4 isozyme is a translation product of the three transcripts that contain fragments of the blood retrotransposon. The mechanism of mutagenesis by the blood insertion is postulated to involve the pause or termination of transcription within the blood sequence, which in turn is caused by the interference of a DNA-binding protein with the RNA polymerase. Thus, we show the formation of a new functional GPDH protein by the insertion of a transposable element and discuss the evolutionary significance of this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study reports the localization of acid phosphatase in the hypopharyngeal gland cells from workers (newly-emerged, nurse and forager), queens (newly-emerged and laying) and males (newly-emerged and mature for mating) of the Brazilian stingless bee, Scaptotrigona postica. The phosphatase activity varied in intensity and localization depending on the individual class, physiological age and the substrate used. In newly-emerged workers, the phosphatase-positive sites suggest the involvement of the enzyme with cellular differentiation that occurs in the presecretory phase, in nurse workers with protein synthesis and in forager workers with changes in cellular activity or glandular regression. In males mature for mating and laying queens, the positive sites are related to secretory activity, showing that the gland maintains some activity in spite of the regressive aspect. Of the substrates used, β-glycerophosphate gave the least specific localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycerol is one of the few carbon sources that can be utilized by Mycoplasma pneumoniae. Glycerol metabolism involves uptake by facilitated diffusion, phosphorylation, and the oxidation of glycerol 3-phosphate to dihydroxyacetone phosphate, a glycolytic intermediate. We have analyzed the expression of the genes involved in glycerol metabolism and observed constitutive expression irrespective of the presence of glycerol or preferred carbon sources. Similarly, the enzymatic activity of glycerol kinase is not modulated by HPr-dependent phosphorylation. This lack of regulation is unique among the bacteria for which glycerol metabolism has been studied so far. Two types of enzymes catalyze the oxidation of glycerol 3-phosphate: oxidases and dehydrogenases. Here, we demonstrate that the enzyme encoded by the M. pneumoniae glpD gene is a glycerol 3-phosphate oxidase that forms hydrogen peroxide rather than NADH(2). The formation of hydrogen peroxide by GlpD is crucial for cytotoxic effects of M. pneumoniae. A glpD mutant exhibited a significantly reduced formation of hydrogen peroxide and a severely reduced cytotoxicity. Attempts to isolate mutants affected in the genes of glycerol metabolism revealed that only the glpD gene, encoding the glycerol 3-phosphate oxidase, is dispensable. In contrast, the glpF and glpK genes, encoding the glycerol facilitator and the glycerol kinase, respectively, are essential in M. pneumoniae. Thus, the enzymes of glycerol metabolism are crucial for the pathogenicity of M. pneumoniae but also for other essential, yet-to-be-identified functions in the M. pneumoniae cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

YAP4, a member of the yeast activator protein (YAP) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glycerol, a product of adipose tissue lipolysis, is an important substrate for hepatic glucose synthesis. However, little is known about the regulation of hepatic glycerol metabolism. Here we show that several genes involved in the hepatic metabolism of glycerol, i.e., cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase (GPDH), glycerol kinase, and glycerol transporters aquaporin 3 and 9, are upregulated by fasting in wild-type mice but not in mice lacking PPARalpha. Furthermore, expression of these genes was induced by the PPARalpha agonist Wy14643 in wild-type but not PPARalpha-null mice. In adipocytes, which express high levels of PPARgamma, expression of cytosolic GPDH was enhanced by PPARgamma and beta/delta agonists, while expression was decreased in PPARgamma(+/-) and PPARbeta/delta(-/-) mice. Transactivation, gel shift, and chromatin immunoprecipitation experiments demonstrated that cytosolic GPDH is a direct PPAR target gene. In line with a stimulating role of PPARalpha in hepatic glycerol utilization, administration of synthetic PPARalpha agonists in mice and humans decreased plasma glycerol. Finally, hepatic glucose production was decreased in PPARalpha-null mice simultaneously fasted and exposed to Wy14643, suggesting that the stimulatory effect of PPARalpha on gluconeogenic gene expression was translated at the functional level. Overall, these data indicate that PPARalpha directly governs glycerol metabolism in liver, whereas PPARgamma regulates glycerol metabolism in adipose tissue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. IMPORTANCE: Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method based on enzymatic activities was developed using three enzymes (glycerokinase, glycerol-3-phosphate oxidase and peroxidase) and colorimetric detection for the determination of glycerol in biodiesel. The enzymatic conversion of glycerol produces H2O2 that is eliminated by the action of peroxidase, an oxygen acceptor and 4- aminoantipirine, producing water and a colored compound, which was analyzed. This method showed good linear correlation coefficient (r = 0.9937) in the concentration range of 4.95 x 10-5 to 3.96 x 10-4% (w/w) and had experimental limits of detection and quantitation of 7.10 x 10-6 and 2.10 x 10-5% (w/w), respectively.