992 resultados para geological model
Resumo:
The new model of North Island Cenozoic palaeogeography developed by Kamp et al. has a range of important implications for the evolution of New Zealand terrestrial taxa over the past 30 Ma. Key aspects include the prolonged isolation of the biota on the North Island landmass from the larger and more diverse greater South Island, and the founding of North Island taxa from the potentially unusual ecosystem of a small island around Northland. The prolonged period of isolation is expected to have generated deep phylogenetic splits within taxa present on both islands, and an important current aim should be to identify such signals in surviving endemics to start building a picture of the historical phylogeography, and inferred ecology of both islands through the Cenozoic. Given the potential differences in founding terrestrial species and climatic conditions, it seems likely that the ecology may have been very diferent between the North and South Islands. New genetic data from the 10 or so species of extinct moa suggest that the radiation of moa was much more recent than previously suggested, and reveals a complex pattern that is inferred to result from the interplay of the Cenozoic biogeography, marine barriers, and glacial cycles.
Resumo:
"Corrections and emendations by Dr. F.L. Kitchin."--Pref.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
Study region The Galilee and Eromanga basins are located in central Queensland, Australia. Both basins are components of the Great Artesian Basin which host some of the most significant groundwater resources in Australia. Study focus This study evaluates the influence of regional faults on groundwater flow in an aquifer/aquitard interbedded succession that form one of the largest Artesian Basins in the world. In order to assess the significance of regional faults as potential barriers or conduits to groundwater flow, vertical displacements of the major aquifers and aquitards were studied at each major fault and the general hydraulic relationship of units that are juxtaposed by the faults were considered. A three-dimensional (3D) geological model of the Galilee and Eromanga basins was developed based on integration of well log data, seismic surfaces, surface geology and elevation data. Geological structures were mapped in detail and major faults were characterised. New hydrological insights for the region Major faults that have been described in previous studies have been confirmed within the 3D geological model domain and a preliminary assessment of their hydraulic significance has been conducted. Previously unknown faults such as the Thomson River Fault (herein named) have also been identified in this study.
Resumo:
The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.
Resumo:
This paper describes the 3D Water Chemistry Atlas - an open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model. Following a review of existing technologies, the system adopts Cesium (an open source Web-based 3D mapping and visualization interface) together with a PostGreSQL/PostGIS database, for the technical architecture. In addition a range of the search, filtering, browse and analysis tools were developed that enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about activities such as coal seam gas extraction, waste water extraction and re-use.
Resumo:
Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.
Resumo:
Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.
Resumo:
The Lockyer Valley in southeast Queensland supports important and intensive irrigation which is dependant on the quality and availability of groundwater. Prolonged drought conditions from ~1997 resulted in a depletion of the alluvial aquifers, and concern for the long-term sustainability of this resource. By 2008, many areas of the valley were at < 20% of storage. Some relief occurred with rain events in early 2009, then in December 2010 - January 2011, most of southeast Queensland experienced unprecedented flooding. These storm-based events have caused a shift in research focus from investigations of drought conditions and mitigation to flood response analysis. For the alluvial aquifer system of the valley, a preliminary assessment of groundwater observation bore data, prior to and during the flood, indicates that there is a spatially variable aquifer response. While water levels in some bores screened in unconfined shallow aquifers have recovered by more than 10 m within a short period of time (months), others show only a small or moderate response. Measurements of pre- and post-flood groundwater levels and high-resolution time-series records from data loggers are considered within the framework of a 3D geological model of the Lockyer Valley using Groundwater Visualisation System(GVS). Groundwater level fluctuations covering both drought and flood periods are used to estimate groundwater recharge using the water table fluctuation method (WTF), supplemented by estimates derived using chloride mass balance. The presentation of hydraulic and recharge information in a 3D format has considerable advantages over the traditional 2D presentation of data. The 3D approach allows the distillation of multiple types of information(topography, geological, hydraulic and spatial) into one representation that provides valuable insights into the major controls of groundwater flow and recharge. The influence of aquifer lithology on the spatial variability of groundwater recharge is also demonstrated.
Resumo:
The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.
Resumo:
A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.
Resumo:
The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na–Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na–HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous–Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls.
Resumo:
A Bacia de Almada, localizada no estado da Bahia, compartilha características similares com as outras bacias da margem leste do Brasil, quando é analisada segundo aspectos como os processos sedimentares e o regime de esforço dominante durante a sua formação. Observa-se uma diferença marcante em relação as outras bacias quando é analisada sob a ótica da composição da crosta transicional, uma vez que não se registra atividade vulcânica durante a fase rifte. A aquisição de um extenso levantamento sísmico 3D, com cabos de 6 km de comprimento e 9.2 segundos de tempo de registro (tempo sísmico duplo), resultaram em imagens sísmicas de boa qualidade das estruturas profundas do rifte. Adicionalmente, estudos de modelagem gravimétrica foram integrados com a análise sísmica para corroborar o modelo geológico. A Bacia de Almada é parte dos sistemas de rifte continentais, desenvolvidos durante o Berriasiano até o Aptiano, que antecederam a quebra do continente do Gondwana, evoluindo posteriormente para uma margem passiva divergente. O processo do rifteamento desenvolveu cinco sub-bacias de orientação NNE-SSO, desde posições terrestres até marinhas profundas, produzindo um arcabouço estrutural complexo. Os perfis da sísmica profunda mostram o afinamento progressivo da crosta continental até espessuras da ordem de 5 km, abaixo da sub-bacia mais oriental, com fatores de estiramento crustal próximo a 7 antes do desenvolvimento de crosta oceânica propriamente dita. As imagens sísmicas de boa qualidade permitem também o reconhecimento de sistemas de falhas lístricas que se iniciam na crosta superior, evoluem atravessando a crosta e conectando as sub-bacias para finalizar em um descolamento horizontal na crosta inferior estratificada. Adicionalmente, a bacia apresenta um perfil assimétrico, compatível com mecanismos de cisalhamento simples. As margens vulcânicas (VM) e não vulcânicas (NVM), são os extremos da análise composicional das margens divergentes continentais. Na Bacia de Almada não se reconhecem os elementos arquiteturais típicos das VM, tais como são as grandes províncias ígneas, caracterizadas por cunhas de refletores que mergulham em direção ao mar e por intenso vulcanismo pré- e sin-rifte nas bacias. Embora a margem divergente do Atlântico Sul seja interpretada tradicionalmente como vulcânica, o segmento do rifte ao sul do Estado da Bahia apresenta características não-vulcânicas, devido à ausência destes elementos arquiteturais e aos resultados obtidos nas perfurações geológicas que eventualmente alcançam a seqüência rifte e embasamento. Regionalmente a margem divergente sul-americana é majoritariamente vulcânica, embora a abundância e a influência do magmatísmo contemporâneo ao rifte seja muito variável. Ao longo da margem continental, desde a Bacia Austral no sul da Argentina, até a Bacia de Pernambuco no nordeste do Brasil, podem ser reconhecidos segmentos de caráter vulcânico forte, médio e não vulcânico. Nos exemplos clássicos de margens não vulcânicas, como a margem da Ibéria, a crosta transicional é altamente afinada podendo apresentar evidências de exumação de manto. Na Bacia de Almada, a crosta transicional apresenta importante estiramento embora não haja evidências concretas de exumação de manto. Os mecanismos responsáveis pela geração e intrusão dos grandes volumes de magma registrados nas margens divergentes são ainda sujeitos a intenso debate. Ao longo da margem divergente sul-americana há evidências da presença dos mecanismos genéticos de estiramento litosférico e impacto de plumas. Alternativamente estes dois mecanismos parecem ter tido um papel importante na evolução tectônica da margem sudeste e sul, diferenciando-as da margem continental onde foi implantada a Bacia de Almada.