990 resultados para genomic walking


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12–C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5′- and 3′-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grass carp hemorrhagic virus (GCHV)-induced gene 2 (Gig2) is a novel gene previously identified from UV-inactivated GCHV-treated Carassius auratus blastulae embryonic (CAB) cells, suggesting that it should play a pivotal role in the interferon (IFN) antiviral response. In this study, a polyclonal anti-Gig2 antiserum was generated and used to study the inductive expression pattern by Western blot analysis, showing no basal expression in normal CAB cells but a significant up-regulation upon UV-inactivated GCHV, polyinosinic:polycytidylic acid (Poly I:Q and recombinant IFN (rIFN). However, constitutive expression of Gig2 is observed in all tested tissues from grass carp (Ctenopharyngodon idellus), and Poly I:C injection increases the relative amount of Gig2 protein in skin, spleen, trunk kidney, gill, hindgut and thymus. Moreover, the genomic sequence covering the whole Gig2 ORF and the upstream promoter region were amplified by genomic walking. Significantly, the Gig2 promoter contains three IFN-stimulated response elements (ISREs), nine GAAA/TfTC motifs and five gamma-IFN activating sites (GAS), which are the characteristics of genes responsive to both type I IFN and type 11 IFN. Subsequently, the complete Gig2 promoter sequence was cloned into pGL3-Basic vector, and its activity was measured by luciferase assays in the transfected CAB cells. The Gig2 promoter-driven construct is highly induced in CAB cells after treatment with Poly I:C or rIFN, and the functional capability is dependent on IFN regulatory factor 7 (IRF7), because its activity can be stimulated by IRF7. Collectively, the data provide strong evidence that Gig2 is indeed a novel IFN inducible gene and its expression is likely dependent on IRF7 upon Poly I:C or IFN. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some members of hairy/Enhancer-of-split-related gene (HES) family have important effects on axial mesoderm segmentation and the establishment and maintenance of the somite fringe. In fishes. the her6 gene, a member of the HES family, is the homologue Of heS1 in mammals and chicken. In this study, the her6 gene and its full-length cDNA from the common carp (Cyprinus carpio) were isolated and characterized. The genomic sequence of common carp her6 is approximately 1.7 kb. with four exons and three introns, and the full-length cDNA of 1314 bp encodes a Putative polypeptide of 271 amino acids. To analyse the promoter sequence of common carp her6. sequences of various lengths upstream from the transcription initiation site of her6 were fused to enhanced green fluorescent. protein gene (eGFP) and introduced into zebrafish embryos by microinjection to generate transgenic embryos. Our results show that the upstream sequence of 500 bp can direct highly efficient and tissue-specific expression of eGFP in zebrafish embryos. whereas a fragment of 200 bp containing the TATA box and a partial suppressor of hairless paired site sequence (SPS) is not sufficient to drive eGFP expression in zebrafish embryos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to identify genes encoding the outer membrane proteins (OMPs) of the myxobacter Flavobacterium columnare G(4), the expression library of the bacterium was screened by using rabbit antisera developed against its OMPs. Positive colonies of Escherichia coli M15 containing fragments encoding the bacterial OMPs were selected for cloning the relevant genes by genomic walking methods. Two genes encoding a membrane-associated zinc metalloprotease and prolyl oligopeptidase are reported in this paper. The membrane-associated zinc metalloprotease gene (map) is 1800 bp in length, coding for 449 amino acids (aa). Despite the presence of a conserved motif HEXXH for all metalloproteases, the special HEXXH similar to 32 aa similar to E motif of the F. columnare G(4) Map and its low level of identity with other reported zinc-containing metalloproteases may imply that the membrane-associated zinc metalloprotease of F. columnare G(4) represents a new family of zincins. The gene encoding prolyl oligopeptidase (Pop), a serine proteinase, is 2352 bp in length, coding for 649 aa. Sequence homology analysis revealed that the Pop is also novel as it has <50% identity with other reported prolyl oligopeptidase family proteins. The present study represents the first to employ anti-fish bacterial OMP sera to screen genes of membrane-associated proteases of fish pathogenic bacteria, and to provide necessary information for the examination of the role of the two genes in the infection and pathogenesis of F. columnare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work represents the nucleotide sequence of the core histone gene cluster from scallop Chlamys farreri. The tandemly repeated unit of 5671 bp containing a copy of the four core histone genes H4, H2B, H2A and H3 was amplified and identified by the techniques of homology cloning and genomic DNA walking. All the histone genes in the cluster had the structures in their 3' flanking region which related to the evolution of histone gene expression patterns throughout the cell cycle, including two different termination signals, the hairpin structure and at least one AATAAA polyadenylation signal. In their 5' region, the transcription initiation sites with a conserved sequence of 5'-PyATTCPu-3' known as the CAP site were present in all genes except to H2B, generally 37-45 bp upstream of the start code. Canonical TATA and CAAT boxes were identified only in certain histone genes. In the case of the promoters of H2B and H2A genes, there was a 5'-GATCC-3' element, which had been found to be essential to start transcription at the appropriate site. After this element, in the promoter of H2B, there was another sequence, 5'-GGATCGAAACGTTC-3', which was similar to the consensus sequence of 5'-GGAATAAACGTATTC-3' corresponding to the H2B-specific promoter element. The presence of enhancer sequences (5'-TGATATATG-3') was identified from the H4 and H3 genes, matching perfectly with the consensus sequence defined for histone genes. There were several slightly more complex repetitive DNA in the intergene regions. The presence of the series of conserved sequences and reiterated sequences was consistent with the view that mollusc histone gene cluster arose by duplicating of an ancestral precursor histone gene, the birth-and-death evolution model with strong purifying selection enabled the histone cluster less variation and more conserved function. Meanwhile, the H2A and the H2B were demonstrated to be potential good marks for phylogenetic analysis. All the results will be contributed to the characterization of repeating histone gene families in molluscs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many agronomically important plant genes, only their position on a genetic map is known. In the absence of an efficient transposon tagging system, such genes have to be isolated by map-based cloning. In bread wheat Triticum aestivum, the genome is hexaploid, has a size of 1.6 × 1010 bp, and contains more than 80% of repetitive sequences. So far, this genome complexity has not allowed chromosome walking and positional cloning. Here, we demonstrate that chromosome walking using bacterial artificial chromosome (BAC) clones is possible in the diploid wheat Triticum monococcum (Am genome). BAC end sequences were mostly repetitive and could not be used for the first walking step. New probes corresponding to rare low-copy sequences were efficiently identified by low-pass DNA sequencing of the BACs. Two walking steps resulted in a physical contig of 450 kb on chromosome 1AmS. Genetic mapping of the probes derived from the BAC contig demonstrated perfect colinearity between the physical map of T. monococcum and the genetic map of bread wheat on chromosome 1AS. The contig genetically spans the Lr10 leaf rust disease resistance locus in bread wheat, with 0.13 centimorgans corresponding to 300 kb between the closest flanking markers. Comparison of the genetic to physical distances has shown large variations within 350 kb of the contig. The physical contig can now be used for the isolation of the orthologous regions in bread wheat. Thus, subgenome chromosome walking in wheat can produce large physical contigs and saturate genomic regions to support positional cloning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To shed light on the potential efficacy of cycling as a testing modality in the treatment of intermittent claudication (IC), this study compared physiological and symptomatic responses to graded walking and cycling tests in claudicants. Sixteen subjects with peripheral arterial disease (resting ankle: brachial index (ABI) < 0.9) and IC completed a maximal graded treadmill walking (T) and cycle (C) test after three familiarization tests on each mode. During each test, symptoms, oxygen uptake (VO2), minute ventilation (VE), respiratory exchange ratio (RER) and heart rate (HR) were measured, and for 10 min after each test the brachial and ankle systolic pressures were recorded. All but one subject experienced calf pain as the primary limiting symptom during T; whereas the symptoms were more varied during C and included thigh pain, calf pain and dyspnoea. Although maximal exercise time was significantly longer on C than T (690 +/- 67 vs. 495 +/- 57 s), peak VO2, peak VE and peak heart rate during C and T were not different; whereas peak RER was higher during C. These responses during C and T were also positively correlated (P < 0.05) with each other, with the exception of RER. The postexercise systolic pressures were also not different between C and T. However, the peak decline in ankle pressures from resting values after C and T were not correlated with each other. These data demonstrate that cycling and walking induce a similar level of metabolic and cardiovascular strain, but that the primary limiting symptoms and haemodynamic response in an individual's extremity, measured after exercise, can differ substantially between these two modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational biology increasingly demands the sharing of sophisticated data and annotations between research groups. Web 2.0 style sharing and publication requires that biological systems be described in well-defined, yet flexible and extensible formats which enhance exchange and re-use. In contrast to many of the standards for exchange in the genomic sciences, descriptions of biological sequences show a great diversity in format and function, impeding the definition and exchange of sequence patterns. In this presentation, we introduce BioPatML, an XML-based pattern description language that supports a wide range of patterns and allows the construction of complex, hierarchically structured patterns and pattern libraries. BioPatML unifies the diversity of current pattern description languages and fills a gap in the set of XML-based description languages for biological systems. We discuss the structure and elements of the language, and demonstrate its advantages on a series of applications, showing lightweight integration between the BioPatML parser and search engine, and the SilverGene genome browser. We conclude by describing our site to enable large scale pattern sharing, and our efforts to seed this repository.