987 resultados para generalized orthonormal bases of functions (GOBF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number

dC(E) = sup(β:Hβ, C(E) > 0),

where Hβ, C is the outer measure

inf(Ʃm(Ci)β:UCi E, Ci ϵ C) .

Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:

Inf(Ʃ(diam. (Ci))β: UCi E, Ci ϵ C),

for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).

If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),

dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)

where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that

dC(E) = sup (dC(μ):μ ϵ M(E)).

This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,

(*) {dB(F), dC(f)): f ϵ Ӻ}

is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.

In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula

dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C

where

∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).

A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PAX6 is a transcription activator that regulates eye development in animals ranging from Drosophila to human. The C-terminal region of PAX6 is proline/serine/threonine-rich (PST) and functions as a potent transactivation domain when attached to a heterologous DNA-binding domain of the yeast transcription factor, GAL4. The PST region comprises 152 amino acids encoded by four exons. The transactivation function of the PST region has not been defined and characterized in detail by in vitro mutagenesis. I dissected the PST domain in two independent systems, a heterologous system using a GAL4 DNA-binding site and the native system of PAX6. In both systems, the results show consistently that all four constituent exons of the PST domain are responsible for the transactivation function. The four exon fragments act cooperatively to stimulate transcription, although none of them can function individually as an independent transactivation domain. Combinations of two or more exon fragments can reconstitute substantial transactivation activity when fused to the DNA-binding domain of GAL4, but they surprisingly do not produce much activity in the context of native PAX6 even though the mutant PAX6 proteins are stable and their DNA-binding function remains unaffected. I conclude that the PAX6 protein contains an unusually large transactivation domain that is evolutionarily conserved to a high degree, and that its full transactivation activity relies on the cooperative action of the four exon fragments.^ Most PAX6 mutations detected in patients with aniridia result in truncations of the protein. Some of the truncation mutations occur in the PST region of PAX6, resulting in mutant proteins that retain their DNA-binding ability but have no significant transactivation activity. It is not clear whether such mutants are true loss-of-function or dominant-negative mutants. I show that these mutants are dominant-negative if they are coexpressed with wild-type PAX6 in cultured cells and that the dominant-negative effects result from enhanced DNA-binding ability of these mutants due to removal of the PST domain. These mutants are able to repress the wild-type PAX6 activity not only at target genes with paired domain binding sites but also at target genes with homeodomain binding sites.^ Mutations in the human PAX6 gene produce various phenotypes, including aniridia, Peters' anomaly, autosomal dominant keratitis, and familial foveal dysplasia. The various phenotypes may arise from different mutations in the same gene. To test this theory, I performed a functional analysis of two missense mutations in the paired domain: the R26G mutation reported in a case of Peters' anomaly, and the I87R mutation identified in a patient with aniridia. While both the R26 and the I87 positions are conserved in the paired boxes of all known PAX genes, X-ray crystallography has shown that only R26 makes contact with DNA. I found that the R26G mutant failed to bind a subset of paired domain binding sites but, surprisingly, bound other sites and successfully transactivated promoters containing those sites. In contrast, the I87R mutant had lost the ability to bind DNA at all tested sites and failed to transactivate promoters. My data support the haploinsufficiency hypothesis of aniridia, and the hypothesis that R26G is a hypomorphic allele. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35E45

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article addresses the problem of estimating the Quality of Service (QoS) of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem impose restrictions on the topology of the orchestration models, limiting their applicability to well-structured orchestration models for example. This article lifts these restrictions by proposing a method for aggregate QoS computation that deals with more general types of unstructured orchestration models. The applicability and scalability of the proposed method are validated using a collection of models from industrial practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-linear model, construed as a generalized version of the models put forth earlier for the study of bi-state social interaction processes, is proposed in this study. The feasibility of deriving the dynamics of such processes is demonstrated by establishing equivalence between the non-linear model and a higher order linear model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time 0(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time 0(n(3+2/k)), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega)) bound. We also present a 2-approximation algorithm with O(m(omega) root n log n) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we address the problem of distributed transmission of functions of correlated sources over a fast fading multiple access channel (MAC). This is a basic building block in a hierarchical sensor network used in estimating a random field where the cluster head is interested only in estimating a function of the observations. The observations are transmitted to the cluster head through a fast fading MAC. We provide sufficient conditions for lossy transmission when the encoders and decoders are provided with partial information about the channel state. Furthermore signal side information maybe available at the encoders and the decoder. Various previous studies are shown as special cases. Efficient joint-source channel coding schemes are discussed for transmission of discrete and continuous alphabet sources to recover function values.