999 resultados para gelatin microparticles containing propolis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gelatin microparticles containing propolis extractive solution (PES) were prepared by spray-drying technique. The optimization of the spray-drying operating conditions and the proportions of gelatin and mannitol were investigated. Regular particle morphology was obtained when mannitol was used, whereas mannitol absence produced a substantial number of coalesced and agglomerated microparticles. Microparticles had a mean diameter of 2.70 mum without mannitol and 2.50 mum with mannitol. The entrapment efficiency for propolis of the microparticles was upto 41 % without mannitol and 39% with mannitol. The microencapsulation by spray-drying technique maintained the activity of propolis against Staphylococcus aureus. These gelatin microparticles containing propolis would be useful for developing intermediary or eventual propolis dosage form without the PES' strong and unpleasant taste, aromatic odour, and presence of ethanol. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gelatin microparticles containing propolis ethanolic extractive solution were prepared by spray-drying technique. Particle,, with regular morphology, mean diameter ranging of 2.27 mu m to 2.48 mu m, and good entrapment efficiency for propolis were obtained. The in vitro antimicrobial activity of microparticles was evaluated against microorganisms of oral importance (Enterococcus faecalis, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus mitis, Streptococcus mutans, Streptococcus sobrinus, Candida albicans, and Lactobacillus casei). The utilized techniques were diffusion in agar and determination of minimum inhibitory concentration. The choice of the method to evaluate the antimicrobial activity of microparticles showed be very important. The microparticles displayed activity against all tested strains of similar way to the propolis, showing greater activity against the strains of E. salivarius, S. sanguinis, S. mitis, and C albicans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the in vitro release of propolis from gelatin microparticles. Gelatin microparticles containing propolis extractive solution (PES) were prepared by spray-drying technique. Microparticles with a mean diameter of 2.50 μm and with regular morphology were obtained. The entrapment efficiency of propolis in the microparticles was over 39%. Spray-drying showed to be a feasible method for the preparation of gelatin microparticles containing propolis. Comparing to PES, the in vitro release of propolis from gelatin microparticles in aqueous medium was slower, considering markers 1 and 2. Thus, it was possible to transform a liquid propolis dosage form into a solid one, improving manipulation, packaging and storage and with modified release in aqueous medium, comparatively to the ethanolic extract of the drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of a malaria DNA vaccine is presented. A 40 kHz ultrasonic atomization device was used to create the microparticles from a feedstock containing 5 volumes of 0.5% w/v PLGA in acetone and 1 volume of condensed DNA which was fed at a flow rate of 18ml h-1. The plasmid DNA vectors encoding a malaria protein were condensed with a cationic polymer before atomization. Results High levels of gene expression in vitro were observed in COS-7 cells transfected with condensed DNA at a nitrogen to phosphate (N/P) ratio of 10. At this N/P ratio, the condensed DNA exhibited a monodispersed nanoparticle size (Z-average diameter of 60.8 nm) and a highly positive zeta potential of 38.8mV. The microparticle formulations of malaria DNA vaccine were quality assessed and it was shown that themicroparticles displayed high encapsulation efficiencies between 82-96% and a narrow size distribution in the range of 0.8-1.9 μm. In vitro release profile revealed that approximately 82% of the DNA was released within 30 days via a predominantly diffusion controlledmass transfer system. Conclusions This ultrasonic atomization technique showed excellent particle size reproducibility and displayed potential as an industrially viable approach for the formulation of controlled release particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal analysis has been widely used for obtaining information about drug-polymer interactions and for pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles Of Poly (D,L-lactide-co-glycolide) (PLGA) containing triamcinolone (TR) in various drug:polymer ratios were produced by spray drying. The main purpose of this study was to study the effect of the spray-drying process not only on the drug-polymer interactions but also on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG), X-ray analysis (XRD), and infrared spectroscopy (IR). The evaluation of drug-polymer interactions and the pre-formulation studies were assessed using the DSC, TG and DTG, and IR. The quantitative analysis of drugs entrapped in PLGA microparticles was performed by the HPLC method. The results showed high levels of drug-loading efficiency for all used drug: polymer ratio, and the polymorph used for preparing the microparticles was the form B. The DSC and TG/DTG profiles for drug-loaded microparticles were very similar to those for the physical mixtures of the components. Therefore, a correlation between drug content and the structural and thermal properties of drug-loaded PLGA microparticles was established. These data indicate that the spray-drying technique does not affect the physico-chemical stability of the microparticle components. These results are in agreement with the IR analysis demonstrating that no significant chemical interaction occurs between TR and PLGA in both physical mixtures and microparticles. The results of the X-ray analysis are in agreement with the thermal analysis data showing that the amorphous form of TR prevails over a small fraction of crystalline phase of the drug also present in the TR-loaded microparticles. From the pre-formulation studies, we have found that the spray-drying methodology is an efficient process for obtaining TR-loaded PLGA microparticles. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formulations containing poloxamer 407 (P407), carbopol 934P (C934P), and propolis extract (PE) were designed for the treatment of periodontal disease. Gelation temperature, in vitro drug release, rheology, hardness, compressibility, adhesiveness, mucoadhesion, and syringeability of formulations were determined. Propolis release from formulations was controlled by the phenomenon of relaxation of polymer chains. Formulations exhibited pseudoplastic flow and low degrees of thixotropy or rheopexy. In most samples, increasing the concentration of C934P content significantly increased storage modulus (G'), loss modulus (G ''), and dynamic viscosity (n') at 5 degrees C, G '' exceeded G'. At 25 and 37 degrees C, n' of each formulation depended on the oscillatory frequency. Formulations showed thermoresponsive behavior, existing as a liquid at room temperature and gel at 34-37 degrees C. Increasing the C934P content or temperature significantly increased formulation hardness, compressibility, and adhesiveness. The greatest mucoadhesion was noted in the formulation containing 15% P407 (w/w) and 0.25% C934P (w/w). The work of syringeability values of all formulations were similar and very desirable with regard to ease of administration. The data obtained in these formulations indicate a potentially useful role in the treatment of periodontitis and suggest they are worthy of clinical evaluation. (c) 2007 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crude propolis and commercial products containing propolis, such as ethanolic extracts, tablets, capsules and powders acquired in São Paulo City (Brazil) were analyzed. The resins of the solid products were extracted with ethanol and found to be present at various concentrations, independently of the propolis concentration specified on the label of the commercial products. The in vitro activity of these resins against S aureus, B cereus and B subrilis was also determined. The results showed that the antibacterial activity rather than the propolis concentration itself should be considered for quality control and that some resins are likely to display a species-specific action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic conducting membranes of gelatin plasticized with glycerol and containing LiI/I-2 have been obtained and characterized by X-ray diffraction measurements, UV-Vis-NIR spectroscopy, thermal analysis and impedance spectroscopy. The transparent (80-90% in the visible range) membranes showed ionic conductivity value of 5 x 10(-5) S/cm at room temperature, which increased to 3 x 10(-3) S/cm at 80 degrees C. All the ionic conductivity measurements as a function of temperature showed VTF dependence and activation energy of 8 kJ/mol. These samples also showed low glass transition temperature of -76 degrees C. Moreover the samples were predominantly amorphous. The membranes applied to small electrochromic devices showed 20% of color change from colored to bleached states during more than 70 cronoamperometric cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microparticles containing large payloads of two anti-tuberculosis (TB) drugs were prepared and evaluated for suitability as a dry powder inhalation targeting alveolar macrophages. A solution containing one part each of isoniazid and rifabutin, plus two parts poly(lactic acid) (L-PLA) was spraydried. Drug content and in vitro release were assayed by HPLC, and DSC was used to elucidate release behaviour. Particle size was measured by laser scattering and aerosol characteristics by cascade impaction using a Lovelace impactor. Microparticles were administered to mice using an inhouse inhalation apparatus or by intra-tracheal instillation. Drugs in solution were administered orally and by intra-cardiac injection. Flow cytometry and HPLC were used to investigate the specificity and magnitude of targeting macrophages. Microparticles having drug content -50% (w/w), particle size -5 m and satisfactory aerosol characteristics (median mass aerodynamic diameter, MMAD = 3.57 m; geometric standard deviation, GSD = 1.41m; fine particle fraction, FPF <4.6"", = 78.91:1: 8.4%) were obtained in yields of >60%. About 70% of the payload was released in vitro in 10 days. Microparticles targeted macrophages and not epithelial cells on inhalation. Drug concentrations in macrophages were -20 times higher when microparticles were inhaled rather than drug solutions administered. Microparticles were thus deemed suitable for enhanced targeted drug delivery to lung macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

6 x 8cm(2) electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrotype/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)(0.81)-TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5 x 10(-5) S/CM for a lithium concentration of 0.3g/15ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (+/- 2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (Delta OD = 0. 15) with a coloration efficiency increasing from 10cm(2)/C (initial cycle) to 23cm(2)/C (25,000th cycle). (c) 2007 Elsevier B.V. All rights reserved.