948 resultados para gel dosimeter calibration


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) spin-spin relaxation time (T-2) is related to the radiation-dependent concentration of polymer formed in polymer gel dosimeters manufactured from monomers in an aqueous gelatin matrix. Changes in T-2 with time post-irradiation have been reported in the literature but their nature is not fully understood. We investigated those changes with time after irradiation using FT-Raman spectroscopy and the precise determination of T-2 at high magnetic field in a polymer gel dosimeter, A model of fast exchange of magnetization taking into account ongoing gelation and strengthening of the gelatin matrix as well as the polymerization of the monomers with time is presented. Published data on the changes of T-2 in gelatin gels as a function of post-manufacture time are used and fitted closely by the model presented. The same set of parameters characterizing the variations of T-2 in gelatin gels and the increasing concentration of polymer determined from Fr-Raman spectroscopy are used successfully in the modelling of irradiated polymer gel dosimeters. Minimal variations in T-2 in an irradiated PAG dosimeter are observed after 13 h.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The quality control optimization of medical processes that use ionizing radiation in the treatment of diseases like cancer is a key element for patient safety and success of treatment. The major medical application of radiation is radiotherapy, i.e. the delivery of dose levels to well-defined target tissues of a patient with the purpose of eliminating a disease. The need of an accurate tumour-edge definition with the purpose of preserving healthy surrounding tissue demands rigorous radiation treatment planning. Dosimetric methods are used for dose distribution mapping region of interest to assure that the prescribed dose and the irradiated region are correct. The Fricke gel (FXG) is the main dosimeter that supplies visualization of the three-dimensional (3D) dose distribution. In this work the dosimetric characteristics of the modified Fricke dosimeter produced at the Radiation Metrology Centre of the Institute of Energetic and Nuclear Research (IPEN) such as gel concentration dose response dependence, xylenol orange addition influence, dose response between 5 and 50Gy and signal stability were evaluated by magnetic resonance imaging (MRI). Using the same gel solution, breast simulators (phantoms) were shaped and absorbed dose distributions were imaged by MRI at the Nuclear Resonance Laboratory of the Physics Institute of Sao Paulo University. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To evaluate the dosimetric characteristics of a new formulation of MAGIC gel, called MAGIC-f, which contains the addition of 3.3% formaldehyde, resulting in a gel with increased thermal stability. Methods: MAGIC-f gel was prepared and stored in hermetically sealed plastic containers. After irradiation, magnetic resonance images (MRI) were acquired to evaluate dose and dose distribution. Dosimetric characterization was performed by means of depth dose measurements, dose response sensitivity and linearity, temporal stability, energy and dose rate dependence, dose integration using sequential beams, temperature influence during MRI acquisition and dose distribution integrity. Results: MAGIC-f depth dose measurements are compatible with the dosimetric table data within +/- 4% uncertainty. The dosimeter's R-2 response varies linearly with dose at least from 0 to 6 Gy. The time-course of the sensitivity of the dosimeter following irradiation, indicated stabilization after 2 weeks. The dosimeter's response to irradiation was altered by 6% when increasing the energy from cobalt beams to 10 MV beams. The dose rate dependence of this new formulation of gel dosimeter is small: less than 2.5% for a variation from 200 to 500 cGy/min, and the dependence with the fractionation scheme is about 50% smaller than for standard MAGIC gel, The dependence on scanning temperature was also verified, and the integrity of the dose distribution was confirmed for a period of 90 days. Conclusions: The results demonstrate the applicability of this new dosimeter in tridimensional dose distribution measurements. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was undertaken to explore gel permeation chromatography (GPC) for estimating molecular weights of proanthocyanidin fractions isolated from sainfoin (Onobrychis viciifolia). The results were compared with data obtained by thiolytic degradation of the same fractions. Polystyrene, polyethylene glycol and polymethyl methacrylate standards were not suitable for estimating the molecular weights of underivatized proanthocyanidins. Therefore, a novel HPLC-GPC method was developed based on two serially connected PolarGel-L columns using DMF that contained 5% water, 1% acetic acid and 0.15 M LiBr at 0.7 ml/min and 50 degrees C. This yielded a single calibration curve for galloyl glucoses (trigalloyl glucose, pentagalloyl glucose), ellagitannins (pedunculagin, vescalagin, punicalagin, oenothein B, gemin A), proanthocyanidins (procyanidin B2, cinnamtannin B1), and several other polyphenols (catechin, epicatechin gallate, epicallocatechin gallate, amentoflavone). These GPC predicted molecular weights represented a considerable advance over previously reported HPLC-GPC methods for underivatized proanthocyanidins. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ionizing radiation in different compositions of polymer gel dosimeters are investigated using FT-Raman spectroscopy and NMR T-2 relaxation times. The dosimeters are manufactured from different concentrations of comonomers (acrylamide and N,N'-methylene-bis-acrylamide) dispersed in different concentrations of an aqueous gelatin matrix. Results are analysed using a model of fast exchange of magnetization between three proton pools. The fraction of protons in each pool is determined using the known chemical composition of the dosimeter and FT-Raman spectroscopy. Based on these results, the physical and chemical processes in interplay in the dosimeters are examined in view of their effect on the changes in T-2 The precipitation of growing macroradicals and the scavenging of free radicals by gelatin are used to explain the rate of polymerization. The model describes the changes in T-2 as a function of the absorbed dose up to 50 Gy for the different compositions. This is expected to aid the theoretical design of new, more efficient dosimeters, since it was demonstrated that the optimum dosimeter (i.e, with the lowest dose resolution) must have a range of relaxation times which match the range of T-2 values which can be determined with the lowest uncertainty using an MRI scanner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the feasibility of data transfer, an interlaboratory comparison was conducted on colon carcinoma cell line (DLD-1) proteins resolved by two-dimensional polyacrylamide gel electrophoresis either on small (6 x 7 cm) or large (16x18 cm) gels. The gels were silver-stained and scanned by laser densitometry, and the image obtained was analyzed using Melanie software. The number of spots detected was 1337+/-161 vs. 2382+/-176 for small vs. large format gels, respectively. After gel calibration using landmarks determined using pl and Mr markers, large- and small-format gels were matched and 712+/-36 proteins were found on both types of gels. Having performed accurate gel matching it was possible to acquire additional information after accessing a 2-D PAGE reference database (http://www.expasy.ch/ cgibin/map2/def?DLD1_HUMAN). Thus, the difference in gel size is not an obstacle for data transfer. This will facilitate exchanges between laboratories or consultation concerning existing databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The authors have sought to study the calibration of a clinical PKA meter (Diamentor E2) and a calibrator for clinical meters (PDC) in the Laboratory of Ionizing Radiation Metrology at Instituto de Energia e Ambiente - Universidade de São Paulo. Materials and Methods Different qualities of both incident and transmitted beams were utilized in conditions similar to a clinical setting, analyzing the influence from the reference dosimeter, from the distance between meters, from the filtration and from the average beam energy. Calibrations were performed directly against a standard 30 cm3 cylindrical chamber or a parallel-plate monitor chamber, and indirectly against the PDC meter. Results The lowest energy dependence was observed for transmitted beams. The cross calibration between the Diamentor E2 and the PDC meters, and the PDC presented the greatest propagation of uncertainties. Conclusion The calibration coefficient of the PDC meter showed to be more stable with voltage, while the Diamentor E2 calibration coefficient was more variable. On the other hand, the PDC meter presented greater uncertainty in readings (5.0%) than with the use of the monitor chamber (3.5%) as a reference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mercury-sensitive chemically modified electrode (CME) based on modified silica gel-containing carbon paste was developed. The functional group attached to the silica gel surface was 3-(2-thiobenzimidazolyl)propyl, which is able to complex mercury ions. This electrode was applied to the determination of mercury(II) ions in aqueous solution. The mercury was chemically preconcentrated on the CME prior to voltammetric determination by anodic stripping in the differential-pulse mode. A calibration graph covering the concentration range from 0.08 to 2 mg l-1 was constructed. The precision for six determinations of 0.122 and 0.312 mg l-1 Hg(II) was 3.2 and 2.9% (relative standard deviation), respectively. The detection limit for a 5-min preconcentration period was 0.013 mg l-1. A study for foreign ions was also made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal and spatial acoustic intensity (SATA) of therapeutic ultrasound (US) equipment should be monitored periodically. In order to evaluate the conditions of US equipment in use in the city of Piracicaba-Sao Paulo, Brazil, 31 machines - representing all Brazilian manufacturers - were analysed under continuous and pulsed conditions at a frequency of 1 MHz. Data about temporal and spatial acoustic intensity were collected and the use of equipment was surveyed. Intensities of 0.1, 0.2, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0 Wcm -2, indicated on the equipment panel were analysed using a previously calibrated digital radiation pressure scale, model UPM-DT-1 (Ohmic Instruments Co). The acoustic intensity (I) results were expressed as superior and inferior quartile ranges for transducers with metal surfaces of 9 cm 2 and an effective radiation area (ERA) Of 4 cm 2. The results under continuous conditions were: I 0.1 = -20.0% and -96%. I 0.2 = -3.1% and -83.7%. I 0.5 = -35.0% and -86.5%. I 0.8 = -37.5% and -71.0%. I 2.5 = -49.0% and -69.5%. I 3.0 = -58.1% and -77.6%. For pulsed conditions, intensities were: I 0.1 = -40.0% and -86.2%. I 1.0 = -50.0% and -86.5%. I 1.5 = -62.5% and -82.5%. I 2.0 = -62.5% and -81.6%. I 2.5 = -64.7% and -88.8%. I 3.0 = -87.1% and -94.8%. In reply to the questionnaire drawn up to check the conditions of use of equipment, all users reported the use of hydrosoluble gel as a coupling medium and none had carried out previous calibrations. Most users used intensities in the range of 0.4. to 1.0 Wcm -2 and used machines for 300 to 400 minutes per week. The majority of machines had been bought during the previous seven years and weekly use ranged from less than 100 minutes to 700 minutes (11 hours 40 minutes). Findings confirm previous observations of discrepancy between the intensity indicated on the equipment panel and that emitted by the transducer and highlight the necessity for periodic evaluations of US equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid and sensitive method was developed to determine trace levels of Cd2+ ions in an aqueous medium by flame atomic absorption spectrometry, using on-line preconcentration in a mini-column packed with 100 mg of 2-aminothiazol modified silica gel (SiAT). The Cd2+ ions were sorbed at pH 5.0. The preconcentrated Cd2+ ions were directly eluted from the column to the spectrometer's nebulizer-burner system using 100 μL of 2 mol L-1 hydrochloric acid. A retention efficiency of over 95% was achieved. The enrichment factor (calculated as the ratio of slopes of the calibration graphs) obtained with preconcentrations in a mini-column packed with SiAT (A = -1.3 × 10-3 + 1.8 × 10-3 [Cd2+]) and without preconcentrations (A = 4 × 10-5 + 3.5 × 10-3[Cd2+]), was 51 and the detection limit calculated was 0.38 μg L-1. The preconcentration procedure was applied to determine trace levels of Cd in river water samples. The optimum preconcentration conditions are discussed herein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mercury-sensitive chemically modified graphite paste electrode was constructed by incorporating modified silica gel into a conventional graphite paste electrode. The functional group attached to the (3-chloropropyl) silica gel surface was 2-mercaptoimidazole, giving a new product denoted by 3-(2-thioimidazolyl)propyl silica gel, which is able to complex mercury ions. Mercury was chemically adsorbed on the modified graphite paste electrode containing 3-(2-thioimidazolyl)propyl silica (TIPSG GPE) by immersion in a Hg(II) solution, and the resultant surface was characterized by cyclic and differential pulse anodic stripping voltammetry. One cathodic peak at 0.1 V and other anodic peak at 0.34 V were observed on scanning the potential from -0.1 to 0.8 V (0.01 M KNO3; ν = 2.0 mV s-1 νs. Ag/AgCl). The anodic peak at 0.34 V show an excellent sensitivity for Hg(II) ions in the presence of several foreign ions. A calibration graph covering the concentration range from 0.02 to 2 mg L-1 was obtained. The detection limit was estimated to be 5 μg L-1. The precision for six determinations of 0.05 and 0.26 mg L-1 Hg(II) was 3.0 and 2.5% (relative standard deviation), respectively. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal. 2005 © The Japan Society for Analytical Chemistry.