1000 resultados para gaudichaudianic acid
Resumo:
Gaudichaudianic acid, a prenylated chromene isolated from Piper gaudichaudianum, has been described as a potent trypanocidal compound against the Y-strain of Trypanosoma cruzi. We herein describe its isolation as a racemic mixture followed by enantiomeric resolution using chiral HPLC and determination of the absolute configuration of the enantiomers as (+)-S and (-)-R by means of a combination of electronic and vibrational circular dichroism using density functional theory calculations. Investigation of the EtOAc extract of the roots, stems, and leaves from both adult specimens and seedlings of P. gaudichaudianum revealed that gaudichaudianic acid is biosynthesized as a racemic mixture from the seedling stage onward. Moreover, gaudichaudianic acid was found exclusively in the roots of seedlings, while it is present in all organs of the adult plant. Trypanocidal assays indicated that the (+)-enantiomer was more active than its antipode. Interestingly, mixtures of enantiomers stowed a synergistic effect, with the racemic mixture being the most active.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The biosynthesis of (2S)-2-methyl-2-(4'-methyl-3-pentenyl)-8-(3-methyl-2-butenyl)-2H-1-benzopyran-6-carboxylic acid (gaudichaudianic acid), the major metabolite in leaves and roots of Piper gaudichaudianum Kunth (Piperaceae), has been investigated employing [1(-13) C]-D-glucose as precursor. The labelling pattern in the isolated gaudichaudianic acid was determined by quantitative 13 C NMR spectroscopy analysis and was consistent with involvement of both mevalonic acid and 2-C-methyl-D-erythritol-4-phosphate pathways in the formation of the dimethylallyl- and geranyl-derived moieties. The results confirmed that both plastidic and cytoplasmic pathways are able to provide isopentenyl diphosphate units for prenylation of p-hydroxybenzoic acid. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The curculionid beetle Naupactus bipes (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) has shown feeding preference for leaves of Piper gaudichaudianum, demonstrating an unexpected specificity for an insect considered to be a generalist. The leaves of P. gaudichaudianum contain the prenylated chromenes gaudichaudianic acid (4, major compound) and its methyl ester (5) in addition to a chromene (3) lacking one prenyl residue. In addition to 4, roots contain the chromone methyl ester (1) and methyl taboganate (2, major compound). Feeding on roots, larvae of N. bipes sequester exclusively the root-specific compounds 1 and 2. Adult beetles sequester the leaf-specific chromenes 3 and 4, but were found to also contain compounds 1 and 2 that are absent in leaves. Therefore, it is suggested that 1 and 2 are sequestered by larvae and can be found in the body of adult insects after long-term storage. In addition, 3 and 4, the major compounds in leaves were found to be associated with the eggs.
Resumo:
Piper crassinervium, P. aduncum, P. hostmannianum, and P. gaudichaudianum contain the new benzoic acid derivatives crassinervic acid (1), aduncumene (8), hostmaniane (18), and gaudichaudianic acid (20), respectively, as major secondary metabolites. Additionally, 19 known compounds such as benzoic acids, chromenes, and flavonoids were isolated and identified. The antifungal activity of these compounds was evaluated by bioautographic TLC assay against Cladosporium cladosporioides and C. sphaerospermum.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
In this study, the CH2Cl2 extract from leaves of Piper chimonantifolium was subjected to several chromatographic separation procedures to afford one chromene (gaudichaudianic acid) as a major compound as well as two flavonoids (dihydrooroxylin and pinocembrin) and three steroids (sitosterol, sitosteryl palmitate and stigmasterol). The structures of all determined compounds were characterised by spectrometric analysis, mainly mass spectrometry and NMR, as well as their optical properties. This article describes the first phytochemical study of the leaves of P. chimonantifolium and an evaluation of the antifungal activity of its major compounds.
Resumo:
Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.