999 resultados para gamma detection
Resumo:
Hippocampal pyramidal neurons exhibit gamma-phase preference in their spikes, selectively route inputs through gamma frequency multiplexing and are considered part of gamma-bound cell assemblies. How do these neurons exhibit gamma-frequency coincidence detection capabilities, a feature that is essential for the expression of these physiological observations, despite their slow membrane time constant? In this conductance-based modelling study, we developed quantitative metrics for the temporal window of integration/coincidence detection based on the spike-triggered average (STA) of the neuronal compartment. We employed these metrics in conjunction with quantitative measures for spike initiation dynamics to assess the emergence and dependence of coincidence detection and STA spectral selectivity on various ion channel combinations. We found that the presence of resonating conductances (hyperpolarization-activated cyclic nucleotide-gated or T-type calcium), either independently or synergistically when expressed together, led to the emergence of spectral selectivity in the spike initiation dynamics and a significant reduction in the coincidence detection window (CDW). The presence of A-type potassium channels, along with resonating conductances, reduced the STA characteristic frequency and broadened the CDW, but persistent sodium channels sharpened the CDW by strengthening the spectral selectivity in the STA. Finally, in a morphologically precise model endowed with experimentally constrained channel gradients, we found that somatodendritic compartments expressed functional maps of strong theta-frequency selectivity in spike initiation dynamics and gamma-range CDW. Our results reveal the heavy expression of resonating and spike-generating conductances as the mechanism underlying the robust emergence of stratified gamma-range coincidence detection in the dendrites of hippocampal and cortical pyramidal neurons.
Resumo:
info:eu-repo/semantics/published
Resumo:
The screening and treatment of latent tuberculosis (TB) infection reduces the risk of progression to active disease and is currently recommended for HIV-infected patients. The aim of this study is to evaluate, in a low TB incidence setting, the potential contribution of an interferon-gamma release assay in response to the mycobacterial latency antigen Heparin-Binding Haemagglutinin (HBHA-IGRA), to the detection of Mycobacterium tuberculosis infection in HIV-infected patients.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
During this thesis a new telemetric recording system has been developed allowing ECoG/EEG recordings in freely behaving rodents (Lapray et al., 2008; Lapray et al., in press). This unit has been shown to not generate any discomfort in the implanted animals and to allow recordings in a wide range of environments. In the second part of this work the developed technique has been used to investigate what cortical activity was related to the process of novelty detection in rats’ barrel cortex. We showed that the detection of a novel object is accompanied in the barrel cortex by a transient burst of activity in the γ frequency range (40-47 Hz) around 200 ms after the whiskers contact with the object (Lapray et al., accepted). This activity was associated to a decrease in the lower range of γ frequencies (30-37 Hz). This network activity may represent the optimal oscillatory pattern for the propagation and storage of new information in memory related structures. The frequency as well as the timing of appearance correspond well with other studies concerning novelty detection related burst of activity in other sensory systems (Barcelo et al., 2006; Haenschel et al., 2000; Ranganath & Rainer, 2003). Here, the burst of activity is well suited to induce plastic and long-lasting modifications in neuronal circuits (Harris et al., 2003). The debate is still open whether synchronised activity in the brain is a part of information processing or an epiphenomenon (Shadlen & Movshon, 1999; Singer, 1999). The present work provides further evidence that neuronal network activity in the γ frequency range plays an important role in the neocortical processing of sensory stimuli and in higher cognitive functions.
Resumo:
OBJECTIVE: To analyse the performance of a new M. tuberculosis-specific interferon gamma (IFNgamma) assay in patients with chronic inflammatory diseases who receive immunosuppressive drugs, including tumour necrosis factor alpha (TNFalpha) inhibitors. METHODS: Cellular immune responses to the M. tuberculosis-specific antigens ESAT-6, CFP-10, TB7.7 were prospectively studied in 142 consecutive patients treated for inflammatory rheumatic conditions. Results were compared with tuberculin skin tests (TSTs). Association of both tests with risk factors for latent M. tuberculosis infection (LTBI) and BCG vaccination were determined and the influence of TNFalpha inhibitors, corticosteroids, and disease modifying antirheumatic drugs (DMARDs) on antigen-specific and mitogen-induced IFNgamma secretion was analysed. RESULTS: 126/142 (89%) patients received immunosuppressive therapy. The IFNgamma assay was more closely associated with the presence of risk factors (odds ratio (OR) = 23.8 (95% CI 5.14 to 110) vs OR = 2.77 (1.22 to 6.27), respectively; p = 0.009), but less associated with BCG vaccination than the TST (OR = 0.47 (95% CI 0.15 to 1.47) vs OR = 2.44 (0.74 to (8.01), respectively; p = 0.025). Agreement between the IFNgamma assay and TST results was low (kappa = 0.17; 95% CI 0.02 to 0.32). The odds for a positive IFNgamma assay strongly increased with increasing prognostic relevance of LTBI risk factors. Neither corticosteroids nor conventional DMARDs significantly affected IFNgamma responses, but the odds for a positive IFNgamma assay were decreased in patients treated with TNFalpha inhibitors (OR = 0.21 (95% CI 0.07 to 0.63), respectively; p = 0.006). CONCLUSIONS: These results demonstrate that the performance of the M. tuberculosis antigen-specific IFNgamma ELISA is better than the classic TST for detection of LTBI in patients receiving immunosuppressive therapy for treatment of systemic autoimmune disorders.
Resumo:
Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.
Resumo:
Detection of gamma-ray emissions from a class of active galactic nuclei (viz blazars), has been one of the important findings from the Compton Gamma-Ray Observatory (CGRO). However, their gamma-ray luminosity function has not-been well determined. Few attempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper, we investigated the evolution and gamma-ray luminosity function of FSRQs and BL Lacs separately. Our investigation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolution models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with an upper limit. BL Lac luminosity function shows no signature of break. As a consistency check, the model source distributions derived from these luminosity functions show no significant departure from the observed source distributions.
Resumo:
The synchronization of neuronal activity, especially in the beta- (14-30 Hz) /gamma- (30 80 Hz) frequency bands, is thought to provide a means for the integration of anatomically distributed processing and for the formation of transient neuronal assemblies. Thus non-stimulus locked (i.e. induced) gamma-band oscillations are believed to underlie feature binding and the formation of neuronal object representations. On the other hand, the functional roles of neuronal oscillations in slower theta- (4 8 Hz) and alpha- (8 14 Hz) frequency bands remain controversial. In addition, early stimulus-locked activity has been largely ignored, as it is believed to reflect merely the physical properties of sensory stimuli. With human neuromagnetic recordings, both the functional roles of gamma- and alpha-band oscillations and the significance of early stimulus-locked activity in neuronal processing were examined in this thesis. Study I of this thesis shows that even the stimulus-locked (evoked) gamma oscillations were sensitive to high-level stimulus features for speech and non-speech sounds, suggesting that they may underlie the formation of early neuronal object representations for stimuli with a behavioural relevance. Study II shows that neuronal processing for consciously perceived and unperceived stimuli differed as early as 30 ms after stimulus onset. This study also showed that the alpha band oscillations selectively correlated with conscious perception. Study III, in turn, shows that prestimulus alpha-band oscillations influence the subsequent detection and processing of sensory stimuli. Further, in Study IV, we asked whether phase synchronization between distinct frequency bands is present in cortical circuits. This study revealed prominent task-sensitive phase synchrony between alpha and beta/gamma oscillations. Finally, the implications of Studies II, III, and IV to the broader scientific context are analysed in the last study of this thesis (V). I suggest, in this thesis that neuronal processing may be extremely fast and that the evoked response is important for cognitive processes. I also propose that alpha oscillations define the global neuronal workspace of perception, action, and consciousness and, further, that cross-frequency synchronization is required for the integration of neuronal object representations into global neuronal workspace.
Resumo:
The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.