943 resultados para gallic acid alkyl esters
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The protective effect of gallic acid and its esters, methyl, propyl, and lauryl gallate, against 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione (GSH) in erythrocytes was studied. The inhibition of hemolysis was dose-dependent, and the esters were significantly more effective than gallic acid. Gallic acid and its esters were compared with regard to their reactivity to free radicals, using the DPPH and AAPH/pyranine free-cell assays, and no significant difference was obtained. Gallic acid and its esters not only failed to inhibit the depletion of intracellular GSH in erythrocytes induced by AAPH but exacerbated it. Similarly, the oxidation of GSH by AAPH or horseradish peroxidase/H(2)O(2) in cell-free systems was exacerbated by gallic acid or gallates. This property could be involved in the recent findings on proapoptotic and pro-oxidant activities of gallates in tumor cells. We provide evidence that lipophilicity and not only radical scavenger potency is an important factor regarding the efficiency of antihemolytic substances.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The protective effect of gallic acid and its esters, methyl, propyl, and lauryl gallate, against 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione (GSH) in erythrocytes was studied. The inhibition of hemolysis was dose-dependent, and the esters were significantly more effective than gallic acid. Gallic acid and its esters were compared with regard to their reactivity to free radicals, using the DPPH and AAPH/pyranine free-cell assays, and no significant difference was obtained. Gallic acid and its esters not only failed to inhibit the depletion of intracellular GSH in erythrocytes induced by AAPH but exacerbated it. Similarly, the oxidation of GSH by AAPH or horseradish peroxidase/H(2)O(2) in cell-free systems was exacerbated by gallic acid or gallates. This property could be involved in the recent findings on pro-apoptotic and pro-oxidant activities of gallates in tumor cells. We provide evidence that lipophilicity and not only radical scavenger potency is an important factor regarding the efficiency of antihemolytic substances.
Resumo:
The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a seriousdisease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread ofX. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). Thetreatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a commontarget involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. © 2013, American Society for Microbiology.
Resumo:
Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.
Resumo:
A novel salicylideneaniline type fluorescent organogelator based on a 3,4,5-(tri-dodecyloxy)benzoyl group immobilizes aromatic solvents. The resulting gels show enhancement in emission and thermochromic/non-photochromic behaviour during sol-to-gel transition.
Resumo:
Polymorphic anhydrous cocrystals generated from a methanolic solution of gallic acid monohydrate and acetamide are shown to convert to the stable form II on complete drying, and the pathway to the stable form is explained on the basis of the variability in the hydrogen bonding patterns followed by theoretical calculations.
Resumo:
A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies. © 2012 Elsevier B.V.
Resumo:
Hydrated cocrystal of gallic acid-isoniazid displays a single crystal-to-single crystal transformation upon dehydration, resulting in a difference of three orders of magnitude in proton conduction. The conduction pathway is shown to follow the Grotthus mechanism, supported by theoretical (DFT) calculations.
Resumo:
Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.
Resumo:
An organic supramolecular ternary salt (gallic acid:isoniazid:water; GINZH) examined earlier for its proton conducting characteristics is observed to display step-like dielectric behavior across the structural phase transition mediated by loss of water of hydration at 389 K. The presence of hydration in the crystal lattice along with proton mobility between acid base pairs controls the ``ferroelectric like'' behavior until the phase transition temperature.