972 resultados para gait kinematic parameters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O tipo de exercício, a intensidade e a frequência são fatores importantes para produzir mudanças na velocidade de andar. O objetivo do estudo foi comparar os efeitos de diferentes tipos de exercício nos parâmetros cinemáticos do andar de idosas, considerando as características antropométricas, a capacidade funcional e o nível de atividade física. Participaram do estudo 56 idosas que foram agrupadas de acordo com o envolvimento, a mais de seis meses, na prática específica de uma atividade: dança (n = 10), musculação (n = 10), hidroginástica (n = 12) e caminhada (n = 11). Além disso, um grupo de idosas inativas (n = 13), sem envolvimento em atividade física regular por pelo menos dois meses, também participou do estudo. Foram mensurados o nível de atividade física (Questionário de Baecke), a capacidade funcional (Bateria da AAHPERD) e os parâmetros cinemáticos do andar (comprimento da passada e do passo, duração e velocidade da passada, cadência e duração das fases de suporte simples, balanço e duplo suporte). Os resultados revelaram que o nível de atividade física do grupo Controle foi diferente dos demais grupos que praticam atividades físicas. em relação à capacidade funcional, apenas o componente força apresentou diferenças entre os grupos, indicando que o grupo Controle difere do grupo musculação. Quanto às variáveis do andar, o grupo Controle foi estatisticamente diferente apenas do grupo dança, tanto no comprimento do passo como no comprimento da passada. Pode-se concluir que a capacidade funcional e os parâmetros do andar dos idosos ativos e sedentários apresentam poucas diferenças

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Movement analysis carried out in laboratory settings is a powerful, but costly solution since it requires dedicated instrumentation, space and personnel. Recently, new technologies such as the magnetic and inertial measurement units (MIMU) are becoming widely accepted as tools for the assessment of human motion in clinical and research settings. They are relatively easy-to-use and potentially suitable for estimating gait kinematic features, including spatio-temporal parameters. The objective of this thesis regards the development and testing in clinical contexts of robust MIMUs based methods for assessing gait spatio-temporal parameters applicable across a number of different pathological gait patterns. First, considering the need of a solution the least obtrusive as possible, the validity of the single unit based approach was explored. A comparative evaluation of the performance of various methods reported in the literature for estimating gait temporal parameters using a single unit attached to the trunk first in normal gait and then in different pathological gait conditions was performed. Then, the second part of the research headed towards the development of new methods for estimating gait spatio-temporal parameters using shank worn MIMUs on different pathological subjects groups. In addition to the conventional gait parameters, new methods for estimating the changes of the direction of progression were explored. Finally, a new hardware solution and relevant methodology for estimating inter-feet distance during walking was proposed. Results of the technical validation of the proposed methods at different walking speeds and along different paths against a gold standard were reported and showed that the use of two MIMUs attached to the lower limbs associated with a robust method guarantee a much higher accuracy in determining gait spatio-temporal parameters. In conclusion, the proposed methods could be reliably applied to various abnormal gaits obtaining in some cases a comparable level of accuracy with respect to normal gait.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade our understanding of foot function has increased significantly[1,2]. Our understanding of foot and ankle biomechanics appears to be directly correlated to advances in models used to assess and quantify kinematic parameters in gait. These advances in models in turn lead to greater detail in the data. However, we must consider that the level of complexity is determined by the question or task being analysed. This systematic review aims to provide a critical appraisal of commonly used marker sets and foot models to assess foot and ankle kinematics in a wide variety of clinical and research purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dorsiflexion (DF) of the foot plays an essential role in both controlling balance and human gait. Electromyography and Sonomyography can provide information on several aspects of muscle function. The aim was to describe a new method for real-time monitoring of muscular activity, as measured using EMG, muscular architecture, as measured using SMG, force, as measured using dynamometry, and kinematic parameters, as measured using IS during isometric and isotonic contractions of the foot DF. The present methodology may be clinically relevant because it involves a reproducible procedure which allows the function and structure of the foot DF to be monitored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate gait spatial parameters at the point of departure, with obstacle heights adjusted to individual body scale. Undergraduate student volunteers (M age=22.4 yr., SD=2.1; 6 women, 1 man) were asked to step once, then cross over an obstacle and stop. This behavior was video recorded to extract kinematic data. The obstacle heights corresponded to high (knee-height) and low obstacles (half the knee-height). Points of departure corresponded to far (length of the lower limb) and close (half the length of the lower limb). The close point of departure influenced the trailing foot's placement ahead of the obstacle as well as step length. The high obstacle influenced the trailing foot's toe clearance. An interaction between factors was observed for leading foot toe clearance. Results indicate that body scale affected the participants' locomotor behavior during the obstacle-avoidance task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The objective of the present study was to investigate the effect of a multimodal exercise intervention on frontal cognitive functions and kinematic gait parameters in patients with Alzheimer's disease. Methods: A sample of elderly patients with Alzheimer's disease (n=27) were assigned to a training group (n=14; aged 78.0±7.3years) and a control group (n=13; aged 77.1±7.4years). Multimodal exercise intervention includes motor activities and cognitive tasks simultaneously. The participants attended a 1-h session three times a week for 16weeks, and the control participants maintained their regular daily activities during the same period. The frontal cognitive functions were evaluated using the Frontal Assessment Battery, the Clock Drawing Test and the Symbol Search Subtest. The kinematic parameters of gait-cadence, stride length and stride speed were analyzed under two conditions: (i) free gait (single task); and (ii) gait with frontal cognitive task (walking and counting down from 20 - dual task). Results and discussion: The patients in the intervention group significantly increased the scores in frontal cognitive variables, Frontal Assessment Battery (P<0.001) and Symbol Search Subtest (P<0.001) after the 16-week period. The control group decreased the scores in the Clock Drawing Test (P=0.001) and increased the number of counting errors during the dual task (P=0.008) after the same period. Conclusion: The multimodal exercise intervention improved the frontal cognitive functions in patients with Alzheimer's disease. © 2012 Japan Geriatrics Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the nervous activation, muscle strength, and biomechanical parameters that influence the cost of walking in older fallers and non-fallers. Methods: Maximal voluntary isokinetic torque was measured for the hip, knee and ankle of older women. Oxygen consumption was measured at rest and during 8 min of walking at self-selected speed. An additional minute of walking was performed to collect kinematic variables and the electromyographic signal of trunk, hip, knee, and ankle muscles, which was analyzed by the linear envelope. Cost of walking was calculated by subtracting resting body mass-normalized oxygen consumption from walking body mass-normalized oxygen consumption. Stride time and length, and ankle and hip range of motion were calculated from kinematic data. Findings: Older adult fallers had 28% lower knee extensor strength (p = 0.02), 47% lower internal oblique activation at heel contact (p = 0.03), and higher coactivation between tibialis anterior and gastrocnemius lateralis in each of the gait phases (p < 0.05). For fallers, a higher activation of gluteus maximus was associated with a higher cost of walking (r = 0.55, p < 0.05 and r = 0.71, p < 0.01, before and after heel contact, respectively). For non-fallers, an association between cost of walking and age (r = 0.60, p = 0.01) and cost of walking and thigh muscle coactivation (r = 0.53, p = 0.01) existed. Interpretation: This study demonstrated that there may be links between lower-extremity muscle weakness, muscle activation patterns, altered gait, and increased cost of walking in older fallers. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Polyneuropathy is a complication of diabetes mellitus that has been very challenging for clinicians. It results in high public health costs and has a huge impact on patients' quality of life. Preventive interventions are still the most important approach to avoid plantar ulceration and amputation, which is the most devastating endpoint of the disease. Some therapeutic interventions improve gait quality, confidence, and quality of life; however, there is no evidence yet of an effective physical therapy treatment for recovering musculoskeletal function and foot rollover during gait that could potentially redistribute plantar pressure and reduce the risk of ulcer formation. Methods/Design: A randomised, controlled trial, with blind assessment, was designed to study the effect of a physiotherapy intervention on foot rollover during gait, range of motion, muscle strength and function of the foot and ankle, and balance confidence. The main outcome is plantar pressure during foot rollover, and the secondary outcomes are kinetic and kinematic parameters of gait, neuropathy signs and symptoms, foot and ankle range of motion and function, muscle strength, and balance confidence. The intervention is carried out for 12 weeks, twice a week, for 40-60 min each session. The follow-up period is 24 weeks from the baseline condition. Discussion: Herein, we present a more comprehensive and specific physiotherapy approach for foot and ankle function, by choosing simple tasks, focusing on recovering range of motion, strength, and functionality of the joints most impaired by diabetic polyneuropathy. In addition, this intervention aims to transfer these peripheral gains to the functional and more complex task of foot rollover during gait, in order to reduce risk of ulceration. If it shows any benefit, this protocol can be used in clinical practice and can be indicated as complementary treatment for this disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a simple and intuitive approach to determining the kinematic parameters of a serial-link robot in Denavit– Hartenberg (DH) notation. Once a manipulator’s kinematics is parameterized in this form, a large body of standard algorithms and code implementations for kinematics, dynamics, motion planning, and simulation are available. The proposed method has two parts. The first is the “walk through,” a simple procedure that creates a string of elementary translations and rotations, from the user-defined base coordinate to the end-effector. The second step is an algebraic procedure to manipulate this string into a form that can be factorized as link transforms, which can be represented in standard or modified DH notation. The method allows for an arbitrary base and end-effector coordinate system as well as an arbitrary zero joint angle pose. The algebraic procedure is amenable to computer algebra manipulation and a Java program is available as supplementary downloadable material.