986 resultados para fuzzy rule interpolation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constructing a monotonicity relating function is important, as many engineering problems revolve around a monotonicity relationship between input(s) and output(s). In this paper, we investigate the use of fuzzy rule interpolation techniques for monotonicity relating fuzzy inference system (FIS). A mathematical derivation on the conditions of an FIS to be monotone is provided. From the derivation, two conditions are necessary. The derivation suggests that the mapped consequence fuzzy set of an FIS to be of a monotonicity order. We further evaluate the use of fuzzy rule interpolation techniques in predicting a consequent associated with an observation according to the monotonicity order. There are several findings in this article. We point out the importance of an ordering criterion in rule selection for a multi-input FIS before the interpolation process; and hence, the practice of choosing the nearest rules may not be true in this case. To fulfill the monotonicity order, we argue with an example that conventional fuzzy rule interpolation techniques that predict each consequence separately is not suitable in this case. We further suggest another class of interpolation techniques that predicts the consequence of a set of observations simultaneously, instead of separately. This can be accomplished with the use of a search algorithm, such as the brute force, genetic algorithm or etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

K. Rasmani and Q. Shen. Data-driven fuzzy rule generation and its application for student academic performance evaluation. Applied Intelligence, 25(3):305-319, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M. Galea and Q. Shen. Iterative vs Simultaneous Fuzzy Rule Induction. Proceedings of the 14th International Conference on Fuzzy Systems, pages 767-772.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

K. Rasmani and Q. Shen. Subsethood-based Fuzzy Rule Models and their Application to Student Performance Classification. Proceedings of the 14th International Conference on Fuzzy Systems, pages 755-760, 2005.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fixed and wireless networks are increasingly converging towards common connectivity with IP-based core networks. Providing effective end-to-end resource and QoS management in such complex heterogeneous converged network scenarios requires unified, adaptive and scalable solutions to integrate and co-ordinate diverse QoS mechanisms of different access technologies with IP-based QoS. Policy-Based Network Management (PBNM) is one approach that could be employed to address this challenge. Hence, a policy-based framework for end-to-end QoS management in converged networks, CNQF (Converged Networks QoS Management Framework) has been proposed within our project. In this paper, the CNQF architecture, a Java implementation of its prototype and experimental validation of key elements are discussed. We then present a fuzzy-based CNQF resource management approach and study the performance of our implementation with real traffic flows on an experimental testbed. The results demonstrate the efficacy of our resource-adaptive approach for practical PBNM systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method of using the so-colled "bacterial algorithm" (4,5) for extracting a fuzzy rule base from a training set. The bewly proposed bacterial evolutionary algorithm (BEA) is shown. In our application one bacterium corresponds to a fuzzy rule system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several alternative approaches have been discussed: Levenberg-Marquardt - no satisfactory convergence speed + local minimum, Bacterial algorithm - problems with large dimensionality (speed), Clustering - no safe criterion for number of clusters + dimentionality problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A decision support system (DSS) was implemented based on a fuzzy logic inference system (FIS) to provide assistance in dose alteration of Duodopa infusion in patients with advanced Parkinson’s disease, using data from motor state assessments and dosage. Three-tier architecture with an object oriented approach was used. The DSS has a web enabled graphical user interface that presents alerts indicating non optimal dosage and states, new recommendations, namely typical advice with typical dose and statistical measurements. One data set was used for design and tuning of the FIS and another data set was used for evaluating performance compared with actual given dose. Overall goodness-of-fit for the new patients (design data) was 0.65 and for the ongoing patients (evaluation data) 0.98. User evaluation is now ongoing. The system could work as an assistant to clinical staff for Duodopa treatment in advanced Parkinson’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utilization of a fuzzy aspect within data analysis attempts to move from a quantitative to a more qualitative investigative environment. As such, this may allow the more non-quantitative researchers results they can use, based on sets of linguistic terms. In this paper an inductive fuzzy decision tree approach is utilized to construct a fuzzy-rule-based system for the first time in a biological setting. The specific biological problem considered attempts to identify the antecedents (conditions in the fuzzy decision rules) which characterize the length of song flight of the male sedge warbler when attempting to attract a mate. Hence, for a non-quantitative investigator the resultant set of fuzzy rules allows an insight into the linguistic interpretation on the relationship between associated characteristics and the respective song flight duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter discusses and illustrates some potential applications of discrete-event simulation (DES) techniques in structural reliability and availability analysis, emphasizing the convenience of using probabilistic approaches in modern building and civil engineering practices. After reviewing existing literature on the topic, some advantages of probabilistic techniques over analytical ones are highlighted. Then, we introduce a general framework for performing structural reliability and availability analysis through DES. Our methodology proposes the use of statistical distributions and techniques – such as survival analysis – to model component-level reliability. Then, using failure- and repair-time distributions and information about the structural logical topology (which allows determination of the structural state from their components’ state), structural reliability, and availability information can be inferred. Two numerical examples illustrate some potential applications of the proposed methodology to achieving more reliable and structural designs. Finally, an alternative approach to model uncertainty at component level is also introduced as ongoing work. This new approach is based on the use of fuzzy rule-based systems and it allows the introduction of experts’ opinions and evaluations in our methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the zero-order Sugeno Fuzzy Inference System (FIS) that preserves the monotonicity property is studied. The sufficient conditions for the zero-order Sugeno FIS model to satisfy the monotonicity property are exploited as a set of useful governing equations to facilitate the FIS modelling process. The sufficient conditions suggest a fuzzy partition (at the rule antecedent part) and a monotonically-ordered rule base (at the rule consequent part) that can preserve the monotonicity property. The investigation focuses on the use of two Similarity Reasoning (SR)-based methods, i.e., Analogical Reasoning (AR) and Fuzzy Rule Interpolation (FRI), to deduce each conclusion separately. It is shown that AR and FRI may not be a direct solution to modelling of a multi-input FIS model that fulfils the monotonicity property, owing to the difficulty in getting a set of monotonically-ordered conclusions. As such, a Non-Linear Programming (NLP)-based SR scheme for constructing a monotonicity-preserving multi-input FIS model is proposed. In the proposed scheme, AR or FRI is first used to predict the rule conclusion of each observation. Then, a search algorithm is adopted to look for a set of consequents with minimized root means square errors as compared with the predicted conclusions. A constraint imposed by the sufficient conditions is also included in the search process. Applicability of the proposed scheme to undertaking fuzzy Failure Mode and Effect Analysis (FMEA) tasks is demonstrated. The results indicate that the proposed NLP-based SR scheme is useful for preserving the monotonicity property for building a multi-input FIS model with an incomplete rule base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An assessment model is usually a mathematical model that produces a measuring index, in the form of a numerical score to a situation/object, with respect to the subject of measure. To allow a valid and useful comparison among various situations/objects according to their associated numerical scores to be made, two important properties, i.e., the monotone output property and output resolution properties, are essential in fuzzy inference-based assessment problems. In this paper, the conditions for a fuzzy assessment model to fulfill the monotone output property is investigated using a derivative approach. A guideline on how the input membership functions should be tuned is also provided. Besides, the output resolution property is defined as the derivative of the output of the assessment model with respect to the input, whereby the derivative should be greater than a minimum resolution. Based on the derivative, improvements to the output resolution property by refining the fuzzy production rules are suggested. A case study on the Bowles fuzzy RPN model to demonstrate the effectiveness of the properties is also included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional Failure Mode and Effect Analysis (FMEA) adopts the Risk Priority Number (RPN) ranking model to evaluate failure risks, to rank failures, as well as to prioritize actions. Although this approach is simple, it suffers from several shortcomings. In this paper, we investigate a number of fuzzy inference techniques for determining the RPN scores, in an attempt to overcome the weaknesses associated with the traditional RPN model. The main objective is to examine the possibility of using fuzzy rule interpolation and reduction techniques to design new fuzzy RPN models. The performance of the fuzzy RPN models is evaluated using a real-world case study pertaining to the test handler process in a semiconductor manufacturing plant. The FMEA procedure for the test handler is performed, and a fuzzy RPN model is developed. In addition, improvement to the fuzzy RPN model is proposed by refining the weights of the fuzzy production rules, hence a new weighted fuzzy RPN model. The ability of the weighted fuzzy RPN model in failure risk evaluation with a reduced rule base is also demonstrated.