929 resultados para fuzzy neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy-neural-network-based inference systems are well-known universal approximators which can produce linguistically interpretable results. Unfortunately, their dimensionality can be extremely high due to an excessive number of inputs and rules, which raises the need for overall structure optimization. In the literature, various input selection methods are available, but they are applied separately from rule selection, often without considering the fuzzy structure. This paper proposes an integrated framework to optimize the number of inputs and the number of rules simultaneously. First, a method is developed to select the most significant rules, along with a refinement stage to remove unnecessary correlations. An improved information criterion is then proposed to find an appropriate number of inputs and rules to include in the model, leading to a balanced tradeoff between interpretability and accuracy. Simulation results confirm the efficacy of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides a unified and comprehensive treatment of the fuzzy neural networks as the intelligent controllers. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty. Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, direct fuzzy neural controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective. A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, the e-completeness requirement and the use of the fuzzy similarity measure were also investigated. Main emphasis of the thesis has been on the applications to the real-world problems such as the industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the temperature and the number-average molecular weight control in the continuous stirred tank polymerization reactor, and the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed fuzzy neural controller shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior. In addition, the applicability of the proposed method beyond the strictly control area has also been investigated, in particular to the data mining and the knowledge elicitation. When compared to the decision tree method and the pruned neural network method for the data mining, the proposed fuzzy neural network is able to achieve a comparable accuracy with a more compact set of rules. In addition, the performance of the proposed fuzzy neural network is much better for the classes with the low occurrences in the data set compared to the decision tree method. Thus, the proposed fuzzy neural network may be very useful in situations where the important information is contained in a small fraction of the available data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the identification of complex dynamic systems using fuzzy neural networks, one of the main issues is the curse of dimensionality, which makes it difficult to retain a large number of system inputs or to consider a large number of fuzzy sets. Moreover, due to the correlations, not all possible network inputs or regression vectors in the network are necessary and adding them simply increases the model complexity and deteriorates the network generalisation performance. In this paper, the problem is solved by first proposing a fast algorithm for selection of network terms, and then introducing a refinement procedure to tackle the correlation issue. Simulation results show the efficacy of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning in neural networks can broadly be divided into two categories, viz., off-line (or batch) learning and online (or incremental) learning. In this paper, a review of a variety of supervised neural networks with online learning capabilities is presented. Specifically, we focus on articles published in main indexed journals in the past 10 years (2003–2013). We examine a number of key neural network architectures, which include feedforward neural networks, recurrent neural networks, fuzzy neural networks, and other related networks. How the online learning methodologies are incorporated into these networks is exemplified, and how they are applied to solving problems in different domains is highlighted. A summary of the review that covers different network architectures and their applications is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of meta-cognitive learning has enriched the landscape of evolving systems, because it emulates three fundamental aspects of human learning: what-to-learn; how-to-learn; and when-to-learn. However, existing meta-cognitive algorithms still exclude Scaffolding theory, which can realize a plug-and-play classifier. Consequently, these algorithms require laborious pre- and/or post-training processes to be carried out in addition to the main training process. This paper introduces a novel meta-cognitive algorithm termed GENERIC-Classifier (gClass), where the how-to-learn part constitutes a synergy of Scaffolding Theory - a tutoring theory that fosters the ability to sort out complex learning tasks, and Schema Theory - a learning theory of knowledge acquisition by humans. The what-to-learn aspect adopts an online active learning concept by virtue of an extended conflict and ignorance method, making gClass an incremental semi-supervised classifier, whereas the when-to-learn component makes use of the standard sample reserved strategy. A generalized version of the Takagi-Sugeno Kang (TSK) fuzzy system is devised to serve as the cognitive constituent. That is, the rule premise is underpinned by multivariate Gaussian functions, while the rule consequent employs a subset of the non-linear Chebyshev polynomial. Thorough empirical studies, confirmed by their corresponding statistical tests, have numerically validated the efficacy of gClass, which delivers better classification rates than state-of-the-art classifiers while having less complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complete supervised training algorithms for B-spline neural networks and fuzzy rule-based systems are discussed. By interducing the relationship between B-spline neural networks and certain types of fuzzy models, training algorithms developed initially for neural networks can be adapted by fuzzy systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effectiveness of an ordering algorithm applied to the supervised Fuzzy ARTMAP (FAM) neural network in pattern classification tasks. Before presenting the input patterns to the FAM network (known as ordered FAM), a fixed order of input patterns is first identified using the ordering algorithm. An experimental study is conducted to compare the results from ordered FAM with the average and voting results from original FAM. In the study, a pool of the original FAM networks is trained using different sequences of input patterns, and the results are averaged. Outputs from various original FAM networks can also be combined using a majority voting strategy to reach a final result. A database comprising various symptoms and measurements of patients suffering from heart attack is used to evaluate the various schemes of the FAM network in medical pattern classification tasks. The results are compared, analyzed, and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims at optimally adjusting a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. Neural network (NN) and fuzzy logic system (FLS) are two methods applied to develop intelligent traffic timing controller. For this purpose, an intersection is considered and simulated as an intelligent agent that learns how to set green times in each cycle based on the traffic information. The training approach and data for both these learning methods are similar. Both methods use genetic algorithm to tune their parameters during learning. Finally, The performance of the two intelligent learning methods is compared with the performance of simple fixed-time method. Simulation results indicate that both intelligent methods significantly reduce the total delay in the network compared to the fixed-time method.