1000 resultados para functional thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma polymerization technique is widely accepted as an effective and simple method for the preparation of functional thin films. By careful choice of precursors and deposition parameters, plasma polymers bearing various functional groups could be easily obtained. In this work, I explored the deposition of four kinds of plasma polymerised functional thin films, including the protein-resistant coatings, the thermosensitive coatings, as well as, the coatings bearing amine or epoxide groups. The deposited plasma polymers were characterized by various techniques, such as X-ray photoelectron spectroscopy, atom force microscopy, Fourier transform infrared spectroscopy, surface plasmon resonance spectroscopy, optical waveguide spectroscopy, and so on. As expected, high retention of various functional groups could be achieved either at low plasma input power or at low duty cycle (duty cycle = Ton/(Ton+Toff)). The deposited functional thin films were found to contain some soluble materials, which could be removed simply by extraction treatment. Besides the thermosentive plasma polymer (see Chapter 9), other plasma polymers were used for developing DNA sensors. DNA sensing in this study was achieved using surface plasmon enhanced fluorescence spectroscopy. The nonfouling thin films (i.e., ppEO2, plasma polymerization of di(ethylene glycol) monovinyl ether) were used to make a multilayer protein-resistant DNA sensor (see Chapter 5). The resulted DNA sensors show good anti-fouling properties towards either BSA or fibrinogen. This sensor was successfully employed to discriminate different DNA sequences from protein-containing sample solutions. In Chapter 6, I investigated the immobilization of DNA probes onto the plasma polymerized epoxide surfaces (i.e., ppGMA, plasma polymerization of glycidyl methacrylate). The ppGMA prepared at a low duty cycle showed good reactivity with amine-modified DNA probes in a mild basic environment. A DNA sensor based on the ppGMA was successfully used to distinguish different DNA sequences. While most DNA detection systems rely on the immobilization of DNA probes onto sensor surfaces, a new homogeneous DNA detection method was demonstrated in Chapter 8. The labeled PNA serves not only as the DNA catcher recognizing a particular target DNA, but also as a fluorescent indicator. Plasma polymerized allylamine (ppAA) films were used here to provide a positively charged surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscience aims at manipulating atoms, molecules and nano-size particles in a precise and controlled manner. Nano-scale control of the thin film structures of organic/polymeric materials is a prerequisite to the fabrication of sophisticated functional devices. The work presented in this thesis is a compilation of various polymer thin films with newly synthesized functional polymers. Cationic and anionic LC amphotropic polymers, p-type and n-type semiconducting polymers with triarylamine, oxadiazole, thiadiazole and triazine moieties are suitable materials to fabricate multilayers by layer-by-layer (LBL) self-assembly with a well defined internal structure. The LBL assembly is the ideal processing technique to prepare thin polymer film composites with fine control over morphology and composition at nano-scale thickness, which may have applications in photo-detectors, light-emitting diodes (LEDs), displays and sensors, as well as in solar cells. The multilayer build-up was investigated with amphotropic LC polymers individually by solution-dipping and spin-coating methods; they showed different internal orders with respect to layering and orientation of the mesogens, as a result of the liquid crystalline phase. The synthesized p-type and n-type semiconducting polymers were examined optically and electrochemically, suggesting that they are favorably promising as hole-(p-type) or electron-(n-type) transport materials in electronic and optoelectronic devices. In addition, we report a successful film deposition of polymers by the vacuum deposition method. The vapor deposition method provides a clean environment; it is solvent free and well suited to sequential depositions in hetero-structured multilayer system. As the potential applications, the fabricated polymer thin films were used as simple electrochromic films and also used as hole transporting layers in LEDs. Electrochemical and electrochromic characterizations of assembled films reveal that the newly synthesized polymers give rise to high contrast ratio and fast switching electrochromic films. The LEDs with vacuum deposited films show dramatic improvements in device characteristics, indicating that the films are promising as hole transporting layers. These are the result of not only the thin nano-scale film structures but also the combination with the high charge carrier mobility of synthesized semiconducting polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Kombination magnetischer Nanopartikel (NP) mit temperatursensitiven Polymeren führt zur Bildung neuer Komposit-Materialien mit interessanten Eigenschaften, die auf vielfältige Weise genutzt werden können. Mögliche Anwendungsgebiete liegen in der magnetischen Trennung, der selektiven Freisetzung von Medikamenten, dem Aufbau von Sensoren und Aktuatoren. Als Polymerkomponente können z.B. Hydrogele dienen. Die Geschwindigkeit der Quellgradänderung mittels externer Stimuli kann durch eine Reduzierung des Hydrogelvolumens erhöht werden, da das Quellen ein diffusionskontrollierter Prozess ist. rnIm Rahmen dieser Arbeit wurde ein durch ultraviolettes Licht vernetzbares Hydrogel aus N-isopropylacrylamid, Methacrylsäure und dem Vernetzer 4-Benzoylphenylmethacrylat hergestellt (PNIPAAm-Hydrogel) und mit magnetischen Nanopartikeln aus Magnetit (Fe3O4) kombiniert. Dabei wurde die Temperatur- und die pH-Abhängigkeit des Quellgrades im Hinblick auf die Verwendung als nanomechanische Cantilever Sensoren (NCS) untersucht. Desweiteren erfolgte eine Charakterisierung durch Oberflächenplasmonen- und optischer Wellenleitermoden-Resonanz Spektroskopie (SPR/OWS). Die daraus erhaltenen Werte für den pKa-Wert und die lower critical solution Temperatur (LCST) stimmten mit den bekannten Literaturwerten überein. Es konnte gezeigt werden, dass eine stärkere Vernetzung zu einer geringeren LCST führt. Die Ergebnisse mittels NCS wiesen zudem auf einen skin-effect während des Heizens von höher vernetzten Polymeren hin.rnDie Magnetit Nanopartikel wurden ausgehend von Eisen(II)acetylacetonat über eine Hochtemperaturreaktion synthetisiert. Durch Variation der Reaktionstemperatur konnte die Größe der hergestellten Nanopartikel zwischen 3.5 und 20 nm mit einer Größenverteilung von 0.5-2.5 nm eingestellt werden. Durch geeignete Oberflächenfunktionalisierung konnten diese in Wasser stabilisiert werden. Dazu wurde nach zwei Strategien verfahren: Zum einen wurden die Nanopartikel mittels einer Silika-Schale funktionalisiert und zum anderen Zitronensäure als Tensid eingesetzt. Wasserstabilität ist vor allem für biologische Anwendungen wünschenswert. Die magnetischen Partikel wurden mit Hilfe von Transmissionselektronenmikroskopie (TEM), und superconductive quantum interference device (SQUID) charakterisiert. Dabei wurde eine Größenabhängigkeit der magnetischen Eigenschaften sowie superparamagnetisches Verhalten beobachtet. Außerdem wurde die Wärmeerzeugung der magnetischen Nanopartikel in einem AC Magnetfeld untersucht. rnDie Kombination beider Komponenten in Form eines Ferrogels wurde durch Mischen Benzophenon funktionalisierter magnetischer Nanopartikel mit Polymer erreicht. Durch Aufschleudern (Spin-Coaten) wurden dünne Filme erzeugt und diese im Hinblick auf ihr Verhalten in einem Magnetfeld untersucht. Dabei wurde eine geringes Plastikverhalten beobachtet. Die experimentellen Ergebnisse wurden anschließend mit theoretisch berechneten Erwartungswerten verglichen und mit den unterschiedlichen Werten für dreidimensionale Ferrogele in Zusammenhang gestellt. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic thin films have myriad of applications in biological interfaces, micro-electromechanical systems and organic electronics. Polyterpenol thin films fabricated via RF plasma polymerization have been substantiated as a promising gate insulating and encapsulating layer for organic optoelectronics, sacrificial place-holders for air gap fabrication as well as antibacterial coatings for medical implants. This study aims to understand the wettability and solubility behavior of the nonsynthetic polymer thin film, polyterpenol. Polyterpenol exhibited monopolar behavior, manifesting mostly electron donor properties, and was not water soluble due to the extensive intermolecular and intramolecular hydrogen bonds present. Hydrophobicity of polyterpenol surfaces increased for films fabricated at higher RF power attributed to reduction in oxygen containing functional groups and increased cross linking. The studies carried out under various deposition conditions vindicate that we could tailor the properties of the polyterpenol thin film for a given application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the electrical switching behavior of three telluride based amorphous chalcogenide thin film samples, Al-Te, Ge-Se-Te and Ge-Te-Si. These amorphous thin films are made using bulk glassy ingots, prepared by conventional melt quenching technique, using flash evaporation technique; while Al-Te sample has been coated in coplanar electrode geometry, Ge-Se-Te and Ge-Te-Si samples have been deposited with sandwich electrodes. It is observed that all the three samples studied, exhibit memory switching behavior in thin film form, with Ge-Te-Si sample exhibiting a faster switching characteristic. The difference seen in the switching voltages of the three samples studied has been understood on the basis of difference in device geometry and thickness. Scanning electron microscopic image of switched region of a representative Ge15Te81Si4 sample shows a structural change and formation of crystallites in the electrode region, which is responsible for making a conducting channel between the two electrodes during switching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of Sb20S40Se40 of thickness 800 nm were prepared by thermal evaporation method. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS and Raman spectra supports the optical changes happening in the film due to light exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly has been recognized as an efficient tool for generating a wide range of functional, chemically, or physically textured surfaces for applications in small scale devices. In this work, we investigate the stability of thin films of polymer solutions. For low concentrations of polymer in the solution, long length scale dewetting patterns are obtained with wavelength approximately few microns. Whereas, for concentrations above a critical value, bimodal dispersion curves are obtained with the dominant wavelength being up to two orders smaller than the usual dewetting length scale. We further show that the short wavelength corresponds to the phase separation in the film resulting in uniformly distributed high and low concentration regions. Interestingly, due to the solvent entropy, at very high concentration values of polymer, a re-entrant behaviour is observed with the dominant length scale now again corresponding to the dewetting wavelength. Thus, we show that the binary films of polymer solutions provide additional control parameters that can be utilized for generating functional textured surfaces for various applications. (C) 2016 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrahedral amorphous carbon (ta-C) thin films are a promising material for use as biocompatible interfaces in applications such as in-vivo biosensors. However, the functionalization of ta-C film surface, which is a pre-requisite for biosensors, remains a big challenge due to its chemical inertness. We have investigated the bio-functionalization of ta-C films fabricated under specific physical conditions through the covalent attachment of functional biomolecular probes of peptide nucleic acid (PNA) to ta-C films, and the effect of fabrication conditions on the bio-functionalization. The study showed that the functional bimolecular probes such as protected long-chain ω-unsaturated amine (TFAAD) can be covalently attached to the ta-C surface through a well-defined structure. With the given fabrication process, electrochemical methods can be applied to the detection of biomolecular interaction, which establishes the basis for the development of stable, label-free biosensors. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper is the main interconnect material in microelectronic devices, and a 2 nm-thick continuous Cu film seed layer needs to be deposited to produce microelectronic devices with the smallest features and more functionality. Atomic layer deposition (ALD) is the most suitable method to deposit such thin films. However, the reaction mechanism and the surface chemistry of copper ALD remain unclear, which is deterring the development of better precursors and design of new ALD processes. In this thesis, we study the surface chemistries during ALD of copper by means of density functional theory (DFT). To understand the effect of temperature and pressure on the composition of copper with substrates, we used ab initio atomistic thermodynamics to obtain phase diagram of the Cu(111)/SiO2(0001) interface. We found that the interfacial oxide Cu2O phases prefer high oxygen pressure and low temperature while the silicide phases are stable at low oxygen pressure and high temperature for Cu/SiO2 interface, which is in good agreement with experimental observations. Understanding the precursor adsorption on surfaces is important for understanding the surface chemistry and reaction mechanism of the Cu ALD process. Focusing on two common Cu ALD precursors, Cu(dmap)2 and Cu(acac)2, we studied the precursor adsorption on Cu surfaces by means of van der Waals (vdW) inclusive DFT methods. We found that the adsorption energies and adsorption geometries are dependent on the adsorption sites and on the method used to include vdW in the DFT calculation. Both precursor molecules are partially decomposed and the Cu cations are partially reduced in their chemisorbed structure. It is found that clean cleavage of the ligand−metal bond is one of the requirements for selecting precursors for ALD of metals. 2 Bonding between surface and an atom in the ligand which is not coordinated with the Cu may result in impurities in the thin film. To have insight into the reaction mechanism of a full ALD cycle of Cu ALD, we proposed reaction pathways based on activation energies and reaction energies for a range of surface reactions between Cu(dmap)2 and Et2Zn. The butane formation and desorption steps are found to be extremely exothermic, explaining the ALD reaction scheme of original experimental work. Endothermic ligand diffusion and re-ordering steps may result in residual dmap ligands blocking surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. This may lead to very slow growth rate, as was the case in the experimental work. By investigating the reduction of CuO to metallic Cu, we elucidated the role of the reducing agent in indirect ALD of Cu. We found that CuO bulk is protected from reduction during vacuum annealing by the CuO surface and that H2 is required in order to reduce that surface, which shows that the strength of reducing agent is important to obtain fully reduced metal thin films during indirect ALD processes. Overall, in this thesis, we studied the surface chemistries and reaction mechanisms of Cu ALD processes and the nucleation of Cu to form a thin film.