976 resultados para fracture failure
Resumo:
Investigations on the fracture behaviour of polymer blends is the topic of this thesis. The blends selected are PP/HDPE and PS/HIPS. PP/HDPE blend is chosen due to its commercial importance and PS/HIPS blend is selected to study the transition from brittle fracture to ductile fracture.PP/HDPE blends were prepared at different compositions by melt blending at 180°C and fracture failure process was investigated by conducting notch sensitivity test and tensile test at different strain rates. The effects of two types of modifiers (particulate and elastomer) on the fracture behaviour and notch sensitivity of PP/HDPE blends were studied. The modifiers used are calcium carbonate, a hard particulate filler commonly used in plastics and Ethylene Propylene Diene Monomer (EPDM). They were added in 2%, 4% and 6% by weight of the blends.The study shows that the mechanical properties of PP/HDPE blends can be optimized by selecting proper blend compositions. The selected modifiers are found to alter and improve the fracture behaviour and notch sensitivity of the blends. Particulate fillers like calcium carbonate can be used for making the mechanical behaviour more stable at the various blend compositions. The resistance to notch sensitivity of the blends is found to be marginally lower in the presence of calcium carbonate. The elastomeric modifier EPDM produces a better stability of the mechanical behaviour. A low concentration of EPDM is sufficient to effect such a change. EPDM significantly improves the resistance to notch sensitivity of the blends. The study shows that judicious selection of modifiers can improve the fracture behaviour and notch sensitivity of PP/HDPE blends and help these materials to be used for critical applications.For investigating the transition in fracture behaviour and failure modes, PS/HIPS blends were selected. The blends were prepared by melt mixing followed by injection moulding to prepare the specimens for conducting tensile, impact and flexure tests. These tests were used to simulate the various conditions which promote failure.The tensile behaviour of unnotched and notched PS/HIPS blend samples were evaluated at slow speeds. Tensile strengths and moduli were found to increase at the higher testing speed for all the blend combinations whereas maximum strain at break was found to decrease. For a particular speed of testing, the tensile strength and modulus show only a very slight decrease as HIPS content is increased up to about 40%. However, there is a drastic decrease on increasing the HIPS content thereafter.The maximum strain at break shows only a very slight change up to about 40% HIPS content and thereafter shows a remarkable increase. The notched specimens also follow a comparable trend even though the notch sensitivity is seen high for PS rich blends containing up to 40% HIPS. The notch sensitivity marginally decreases with increase in HIPS content. At the same time, it is found to increase with the increase in strain rate. It is observed that blends containing more than 40% HIPS fail in ductile mode.The impact characteristics of PSIHIPS blends studied were impact strength, the energy absorbed by the test specimen and impact toughness. Remarkable increase in impact strength is observed as HIPS content in the blend exceeds 40%. The energy absorbed by the test specimens and the impact toughness also show a comparable trend.Flexural testing which helps to characterize the load bearing capacity was conducted on PS/HIPS blend samples at the two different testing speeds of 5mmlmin and 10 mm/min. The flexural strength increases with increase in testing speed for all the blend compositions. At both the speeds, remarkable reduction in flexural strength is observed as HIPS content in the blend exceeds 40%. The flexural strain and flexural energy absorbed by the specimens are found to increase with increase in HIPS content. At both the testing speeds, brittle fracture is observed for PS rich blends whereas HIPS rich blends show ductile mode of failure.Photoelastic investigations were conducted on PS/HIPS blend samples to analyze their failure modes. A plane polariscope with a broad source of light was utilized for the study. The coloured isochromatic fringes formed indicate the presence of residual stress concentration in the blend samples. The coverage made by the fringes on the test specimens varies with the blend composition and it shows a reducing trend with the increase in HIPS content. This indicates that the presence of residual stress is a contributing factor leading to brittle fracture in PS rich blends and this tendency gradually falls with increase in HIPS content and leads to their ductile mode of failure.
Resumo:
A recoverable plate impact testing technology has been developed for studying fracture mechanisms of mode II crack. With this technology, a single duration stress pulse with submicrosecond duration and high loading rates, up to 10(8) MPam(1/2)s(-1), can be produced. Dynamic failure tests of Hard-C 60# steel were carried out under asymmetrical impacting conditions with short stress-pulse loading. Experimental results show that the nucleation and growth of several microcracks ahead of the crack tip, and the interactions between them, induce unsteady crack growth. Failure mode transitions during crack growth, both from mode I crack to mode II and from brittle to ductile fracture, were observed. Based on experimental observations, a discontinuous crack growth model was established. Analysis of the crack growth mechanisms using our model shows that the shear crack extension is unsteady when the extending speed is between the Rayleigh wave speed c(R) and the shear wave speed c(S). However, when the crack advancing speed is beyond c(S), the crack grows at a steady intersonic speed approaching root 2c(S). It also shows that the transient mechanisms, such as nucleation, growth, interaction and coalescence among microcracks, make the main crack speed jump from subsonic to intersonic and the steady growth of all the subcracks causes the main crack to grow at a stable intersonic speed.
Resumo:
A numerical simulation of damage evolution in a two-dimensional system of micocracks is presented. It reveals that the failure is induced by a cascade of coalescences of microcracks, and the fracture surface appears fractal. A model of evolution-induced catastrophe is introduced. The fractal dimension is found to be a function of evolution rule only. This result could qualitatively explain the correlation of fractal dimension and fracture toughness discovered in experiments.
Resumo:
Fuzzy reliability methods are used to study the corrosion of pipelines. Three methods are used. They consist of using fracture failure modes, failure assessment diagram (FAD) and residual strength for establishing fuzzy reliability. Calculations are made by application of JC, improved GA-JC and Mente-carlo methods. Examples for oilfield injecting water pipeline show the residual strength well agree with field data. Mente-carlo methods appear to yield results that have better agreement with field data.
Resumo:
A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed c(R) and the shear wave speed c(s); however, when the growth speed approaches root 2c(s), the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.
Resumo:
Rock heterogeneity plays an important role in rock fracturing processes. However, because fracturing is a dynamic process and it is very difficult to quantify materials' heterogeneity, most of the theories dealing with local failure were based on the homogeneity assumption, very few involving stress distribution heterogeneity and successive local failure due to rock heterogeneity. Therefore, based on various references, the author studied the laws and mechanism of influences of heterogeneity on rock fracturing processes, under the frame of the project "Study on Associate Mechanism between Rock Mass Fracture and Strength Failure", funded by Nation Natural Science Fund. the research consists of such aspects as size effect correction to rock fracture parameters, SEM (Scanning Electron Microscope) real-time observation on rock samples under different loads, micro-hardness testing, and numerical simulating based on microstructure. There are some important research results as followed: 1. Unifying formula for nonlinear and non-singularity correction, simplifying the complex process of correcting size effect on rock fracture toughness. 2. Using the methods of micro-hardness testing mineral grain and random jointing micrograph digitizing mineral slice, preliminarily solving the problems of numerical simulating and quantitatively describing the heterogeneous strength and its distribution rules, which has certain innovation and better practicability. 3. Based on SEM real-time observation, studying the micro-process of fracturing in marble, sandstone, granite, and mushroom stone samples with premanufactured cracks under tension, pure-shear and compression-shear conditions. Strength Failure was observed: there was some kind failure occurred before Fracture Failure in marble and sandstone samples with double cracks under pure-shearing. It is believed that the reason of strength failure developing is that stress concentrations is some locations are larger than that near the end of pre-manufactured cracks. 4. Based on the idea that rock macro-constitute is composed of complex microstructure, the promising method used to handle heterogeneity considers not only the heterogeneity of the rock medium, but also the heterogeneity of the rock structure. 5. Putting forward two types of rock strength failure: medium strength failure induced by heterogeneity of rock medium and structure strength failure induced by heterogeneity rock structure. 6. By evaluating potential fracture cell with proper failure priority, the numerical simulating method solved the problem of simulating the coextensive strength failure and fracture failure with convention strength failure rules. The result of numerical analysis shows that the influence of heterogeneity on rock fracturing processes is evident. The sinuosity of the rock fracture-propagation path, and the irregular fluctuation of loading displacement curve, is mainly controlled by the heterogeneity of rock medium.
Resumo:
The plain fatigue and fretting fatigue tests of Ti-1023 titanium alloy were performed using a high-frequency push-pull fatigue testing machine. Both σmax versus number of cycles to failure curves were obtained for comparative analysis of the fretting effect on fatigue performance of the titanium alloy. Meanwhile, by analyzing the fracture of plain fatigue and fretting fatigue, the fretting scar and the fretting debris observed by scanning electron microscopy (SEM), the mechanism of fretting fatigue failure of Ti-1023 titanium alloy is discussed. The fretting fatigue strength of Ti-1023 titanium alloy is 175 MPa under 10 MPa contact pressure, which is 21% of plain fatigue strength (836 MPa). Under fretting condition, the Ti-1023 titanium alloy fatigue fracture failure occurs in a shorter fatigue life. When it comes to σmax versus number of cycles to failure curves, data points in the range of 106–107 cycles under plain fatigue condition moved to the range of 105–106 under fretting fatigue condition. The integrity of the fatigue specimen surface was seriously damaged under the effect of fretting. With the alternating stress loaded on specimen, the stress concentrated on the surface of fretting area, which brought earlier the initiation and propagation of crack.
Resumo:
An analysis for the cause of fracture failure of a cantilever steel sign post damaged by wind has been carried out. An unusual cause of failure has been identified, which is the subject of this paper. Microscopy and microanalysis of the fracture surface showed that the failure was due to pre-existing cracks, from the fabrication of the post. This conclusion was reached after detecting and analysing a galvanised layer on the fracture surfaces.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Shape memory materials (SMMs) represent an important class of smart materials that have the ability to return from a deformed state to their original shape. Thanks to such a property, SMMs are utilized in a wide range of innovative applications. The increasing number of applications and the consequent involvement of industrial players in the field have motivated researchers to formulate constitutive models able to catch the complex behavior of these materials and to develop robust computational tools for design purposes. Such a research field is still under progress, especially in the prediction of shape memory polymer (SMP) behavior and of important effects characterizing shape memory alloy (SMA) applications. Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly in cardiovascular stents, implanted in the human body and experiencing millions of in-vivo cycles by the blood pressure, clearly indicates the need for a deeper understanding of fatigue/fracture failure in microsize components. The development of reliable stent designs against fatigue is still an open subject in scientific literature. Motivated by the described framework, the thesis focuses on several research issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials. Starting from the constitutive modeling, the thesis proposes to develop refined phenomenological models for reliable SMA and SMP behavior descriptions. Then, concerning the numerical modeling, the thesis proposes to implement the models into numerical software by developing implicit/explicit time-integration algorithms, to guarantee robust computational tools for practical purposes. The described modeling activities are completed by experimental investigations on SMA actuator springs and polyethylene polymers. Finally, regarding the fatigue modeling, the thesis proposes the introduction of a general computational approach for the fatigue-life assessment of a classical stent design, in order to exploit computer-based simulations to prevent failures and modify design, without testing numerous devices.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.
Resumo:
BACKGROUND: Percutaneous Kirschner wire fixation represents the classic treatment for displaced supracondylar humeral fractures in childhood. This type of treatment first requires satisfactory reduction of the fracture. Failure to achieve a satisfactory reduction or inadequate stabilization can result in instability of the fracture fragments, which can result in either an unsatisfactory cosmetic or functional outcome. In our experience, these problems can be overcome with the use of a small lateral external fixator. METHODS: Between 1999 and 2005, thirty-one of 170 Gartland type-III supracondylar humeral fractures were treated with a lateral external fixator. The outcome of treatment was analyzed with regard to limb alignment, elbow movement, cosmetic appearance, and patient satisfaction. RESULTS: In twenty-eight of the thirty-one patients, a satisfactory reduction was achieved with closed methods. All children except one had a normal or good range of movement. The cosmetic result was excellent in all cases. All of the children and their parents stated that they would choose this treatment again. CONCLUSIONS: The use of a small lateral external fixator seems to be a safe alternative for the treatment of displaced supracondylar fractures of the humerus when a closed reduction appears to be unattainable by means of manipulation alone or when sufficient stability is not achieved with standard methods of Kirschner wire fixation.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.
Resumo:
In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.