998 resultados para forced unsteady-state reactors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alloys of Al-Sn and Al-Si are widely used in tribological applications such as cylinder liners and journal bearings. Studies of the influence of the as-cast microstructures of these alloys on the final mechanical properties and wear resistance can be very useful for planning solidification conditions in order to permit a desired level of final properties to be achieved. The aim of the present study was to contribute to a better understanding about the relationship between the scale of the dendritic network and the corresponding mechanical properties and wear behavior. The Al-Sn (15 and 20 wt pct Sn) and Al-Si (3 and 5 wt pct Si) alloys were directionally solidified under unsteady-state heat flow conditions in water-cooled molds in order to permit samples with a wide range of dendritic spacings to be obtained. These samples were subjected to tensile and wear tests, and experimental quantitative expressions correlating the ultimate tensile strength (UTS), yield tensile strength, elongation, and wear volume to the primary dendritic arm spacing (DAS) have been determined. The wear resistance was shown to be significantly affected by the scale of primary dendrite arm spacing. For Al-Si alloys, the refinement of the dendritic array improved the wear resistance, while for the Al-Sn alloys, an opposite effect was observed, i.e., the increase in primary dendrite arm spacing improved the wear resistance. The effect of inverse segregation, which is observed for Al-Sn alloys, on the wear resistance is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were conducted to investigate the influence of thermal parameters on the columnar to equiaxed transition during the horizontal unsteady-state directional solidification of Al-Si alloys. The parameters analyzed include the heat transfer coefficients, growth rates, cooling rates, temperature gradients and composition. A combined theoretical and experimental approach is developed to determine the solidification thermal variables considered. The increasing solute content in Al-Si alloys was not found to affect significantly the experimental position of the CET which occurred for cooling rates in the range between 0.35 and 0.64 K/s for any of three alloy compositions examined. A comparative analysis between the results of this work and those from the literature proposed to analyze the CET during upward vertical solidification of Al-Si alloys is reported and the results have shown that the end of the columnar region during horizontal directional solidification is abbreviated as a result of about six times higher thermal gradient than that verified during upward unidirectional solidification of alloys investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this paper is to investigate both the columnar to equiaxed transition and primary dendritic arm spacings of Al-3wt.%Si alloy during the horizontal directional solidification. The transient heat transfer coefficient at the metal-mold interface is calculated based on comparisons between the experimental thermal profiles in castings and the simulations provided by a finite difference heat flow program. Simulated curve of the interfacial heat transfer coefficient was used in another numerical solidification model to determine theoretical values of tip growth rates, cooling rates and thermal gradients that are associated with both columnar to equiaxed transition and primary dendritic arm spacings. A good agreement was observed between the experimental values of these thermal variables and those numerically simulated for the alloy examined. A comparative analysis is carried out between the experimental data of this work and theoretical models from the literature that have been proposed to predict the primary dendritic spacings. In this context, this study may contribute to the understanding of how to manage solidification operational parameters aiming at designing the microstructure of Al-Si alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This booklet contains abstracts of papers presented at a biochemical engineering symposium conducted at the University of Nebraska-Lincoln on April 29, 1972. This was the second annual symposium on this subject, the first having been held at Kansas State University on June 4, 1971. It is expected that future symposia will alternate between the two campuses. ContentsS.H. Lin, Kansas State University, "Enzyme Reaction in a Tubular Reactor with Laminar Flow" Gregory C. Martin, University of Nebraska, "Estimation of Parameters in Population Models for Schizosaccharomyces pombe from Chemostat Data" Jaiprakash S. Shastry and Prakash N. Mishra, Kansas State University, "Immobilized Enzymes: Analysis of Ultrafiltration Reactors" Mark D. Young, University of Nebraska, "Modelling Unsteady-State Two-Species Data Using Ramkrishna's Staling Model" G.C.Y. Chu, Kansas State University, "Optimization of Step Aeration Waste Treatment Systems Using EVOP" Shinji Goto, University of Nebraska, "Growth of the Blue-Green Alga Microcytis aeruginosa under Defined Conditions" Prakash N. Mishra and Thomas M.C. Kuo, Kansas State University, "Digital Computer Simulation of the Activated Sludge System: Effect of Primary Clarifier on System Performance" Mark D. Young, University of Nebraska, "Aerobic Fermentation of Paunch Liquor"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiscal Year 2010 proved to be a year of many challenges. While the nation and the state dealt with an unprecedented economic downturn, a growing number of Iowa families sought assistance to pay higher education costs. The year saw Iowa’s unemployment rate soar to a 23-year high, contributing to a 22 percent increase in enrollment at Iowa’s colleges and universities. An increasing number of Iowans applied for financial aid to pay for college as evidenced by a 47 percent increase in the number of Free Applications for Federal Student Aid (FAFSA) completed over the past 5 years. The economic downturn also forced the State to make a 10 percent reduction in all general fund appropriations which reduced the total amount of state-funded financial aid available to assist families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood flow in human aorta is an unsteady and complex phenomenon. The complex patterns are related to the geometrical features like curvature, bends, and branching and pulsatile nature of flow from left ventricle of heart. The aim of this work was to understand the effect of aorta geometry on the flow dynamics. To achieve this, 3D realistic and idealized models of descending aorta were reconstructed from Computed Tomography (CT) images of a female patient. The geometries were reconstructed using medical image processing code. The blood flow in aorta was assumed to be laminar and incompressible and the blood was assumed to be Newtonian fluid. A time dependent pulsatile and parabolic boundary condition was deployed at inlet. Steady and unsteady blood flow simulations were performed in real and idealized geometries of descending aorta using a Finite Volume Method (FVM) code. Analysis of Wall Shear Stress (WSS) distribution, pressure distribution, and axial velocity profiles were carried out in both geometries at steady and unsteady state conditions. The results obtained in thesis work reveal that the idealization of geometry underestimates the values of WSS especially near the region with sudden change of diameter. However, the resultant pressure and velocity in idealized geometry are close to those in real geometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työssä tutkittiin miten totuudenmukaisia tuloksia syklonierottimen virtauskentästä saadaan numeerisella laskennalla, kun käytetään eri turbulenssimalleja. Tarkoitus oli myös selvittää yleisesti syklonin toimintaperiaatteita, haasteita sen käytössä sekä syklonin numeerisen virtauslaskennan perusteita. Numeerisen virtauslaskennan teoria selitetään pääpiirteittäin, samoin turbulenssin mallinnus. Työn laskentaosiossa simuloitiin Fluent-ohjelmalla syklonin virtauskenttää kuumalla ilmalla sekä kahdella eri turbulenssimallilla ja verrattiin tuloksia kirjallisuudesta löytyviin mittaustuloksiin. Simuloinnit suoritettiin sekä ajasta riippuvana että ajasta riippumattomana ja kahdella eri laskentahilalla. Simulointien tulokset osoittivat, että RNG k-ε turbulenssimalli ei kykene tuottamaan totuu-denmukaista virtauskenttää. Toisen käytetyn turbulenssimallin, Reynolds-jännitysmallin tulokset vastasivat enemmän mittaustuloksia. Reynolds-jännitysmallia voidaan pitää käyttökelpoisena syklonin simuloinnissa tämän työn ja kirjallisuuden perusteella. Mallissa oli yksinkertaistuksia, esimerkiksi kiinteää ainetta ei otettu huomioon lainkaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effective diffusivity of clove essential oil in subcritical liquid CO2 was estimated. The experimental apparatus employed was a fixed-bed extractor. The fixed bed was formed with grounded (mesh -32 + 65) and compacted clove buds which were considered a solid element. The effective diffusion coefficient was evaluated by fitting the experimental concentration profile to the unsteady state mass balance equation for unidirectional diffusion in a finite solid medium. The diffusion coefficient was related to the concentration of oil in the solid by an exponential function. The estimated values of the effective diffusion coefficient varied from 3.64 to 5.22x10-10 m2/s. The average relative errors were lower than 3.1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific heat, thermal conductivity, thermal diffusivity, and density of coffee extract were experimentally determined in the range of 0.49 to 0.90 (wet basis) water content and at temperatures varying from 30 to 82 degreesC. Thermal conductivity and specific heat were measured by means of the same apparatus- a cell constituted of two concentric cylinders - operating at steady and unsteady state, respectively. The thermal diffusivity was measured by the well-known Dickerson's method and density was determined by picnometry. The results obtained were used to derive mathematical models for predicting these properties as a function of concentration and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo teórico-experimental sobre os efeitos da convecção termossolutal sobre os espaçamentos dendríticos primários de ligas hipoeutéticas Sn-Pb. Assim, um dispositivo experimental de configuração horizontal refrigerado a água foi construído e amostras do referido sistema de ligas foram solidificadas direcionalmente sob condições transientes de extração de calor. Um método teórico-experimental é aplicado para determinar as velocidades de deslocamento da isoterma liquidus, os gradientes térmicos e as taxas de resfriamento. São também apresentados resultados para os respectivos coeficientes de transferência de calor na interface metal/molde os quais foram calculados a partir de uma análise comparativa realizada entre os perfis experimentais de temperatura e valores teóricos fornecidos por um método numérico baseado em volumes finitos. Alguns modelos teóricos para a previsão dos espaçamentos dendríticos primários são comparados com os resultados experimentais obtidos. Finalmente, um estudo comparativo é realizado entre resultados encontrados neste trabalho e aqueles apresentados na literatura para os espaçamentos dendríticos primários das ligas Sn-Pb investigadas quando solidificadas direcionalmente nos sistemas verticais ascendente e descendente, sob as mesmas condições. A análise das microestruturas indica que os espaçamentos dendríticos primários são bastante influenciados pela direção de crescimento do sólido.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relação entre macroestrutura e propriedades mecânicas de um material tem sido objeto de intensa investigação pois o tamanho dos grãos, a orientação cristalina e a distribuição dos mesmos exercem influência direta no comportamento mecânico dos produtos acabados. Assim, o entendimento dos fatores que influenciam a formação das zonas estruturais coquilhada, colunar e equiaxial nos materiais fundidos como, por exemplo, o sistema de liga, composição da liga, temperatura de vazamento, temperatura do molde, material do molde, coeficientes de transferência de calor na interface metal/molde, taxa de resfriamento, gradientes térmicos, dimensão da peça, presença de convecção no líquido, transporte de soluto, etc é de fundamental importância para a melhoria da eficiência do processo de fundição envolvido. Com base no conhecimento dos princípios termofísicos em que essas zonas são formadas, é possível manipular de forma bastante razoável a estrutura dos produtos fundidos e, conseqüentemente, as propriedades mecânicas dos mesmos. Tendo como principal foco a análise da mudança da zona colunar para a equiaxial, este trabalho apresenta um estudo teórico-experimental sobre a transição colunar/equiaxial (TCE) das ligas hipoeutéticas Al- 3%Si, Al-7%Si Al-9%Si solidificadas unidirecionalmente em um dispositivo horizontal refrigerado a água sob condições transientes de fluxo de calor. A condição de contato térmico na superfície de extração de calor foi padronizada como sendo polida. Os perfis térmicos foram medidos em diferentes posições do lingote e os dados foram armazenados automaticamente. Um método numérico é utilizado na determinação de variáveis térmicas de solidificação como coeficientes de transferência de calor na interface metal/molde (hi), velocidades das isotermas liquidus (VL), gradientes térmicos (GL) e taxas de resfriamento (TR) que influenciam diretamente a referida transição estrutural. Os resultados teóricos e experimentais apresentaram boa concordância. Um estudo comparativo entre os resultados obtidos neste trabalho e valores propostos na literatura para analisar a TCE durante a solidificação unidirecional vertical ascendente sob condições transientes de extração de calor das ligas investigadas, também é apresentado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O principal objetivo deste trabalho é desenvolver um estudo teórico/experimental sobre a influência dos parâmetros térmicos de solidificação (V L e T) na transição colunar/equiaxial das ligas Sn 5%Pb, Sn 15%Pb, Sn 20%Pb e Sn 25%Pb sob condições de solidificação unidirecional horizontal refrigerada à água. Inicialmente, são calculadas experimentalmente as velocidades da isoterma líquidus e as taxas de resfriamento das ligas em questão cujos resultados são comparados com as previsões teóricas de um modelo numérico. Em seguida, a posição da transição colunar/equiaxial é determinada por meio da análise macroestrutural assim como são avaliados os efeitos impostos por correntes convectivas devido ao efeito do soluto no comportamento da transição colunar/equiaxial das referidas ligas. Finalmente, é realizado um estudo experimental comparativo para as ligas estudadas quando solidificadas unidirecionalmente em diferentes sistemas refrigerados à água.