32 resultados para foliations
Resumo:
Let Y = (f, g, h): R(3) -> R(3) be a C(2) map and let Spec(Y) denote the set of eigenvalues of the derivative DY(p), when p varies in R(3). We begin proving that if, for some epsilon > 0, Spec(Y) boolean AND (-epsilon, epsilon) = empty set, then the foliation F(k), with k is an element of {f, g, h}, made up by the level surfaces {k = constant}, consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek`s Jacobian Conjecture for polynomial maps of R(n).
Resumo:
In this paper we prove the existence of closed geodesics in the leaf space of some classes of singular Riemannian foliations (s.r.f.), namely s.r.fs. that admit sections or have no horizontal conjugate points. We also investigate the shortening process with respect to Riemannian foliations.
Resumo:
In this work we investigate the relation between the fundamental group of a complete Riemannian manifold M and the quotient between the Weyl group and reflection group of a polar action on M, as well as the relation between the fundamental group of M and the quotient between the lifted Weyl group and lifted reflection group. As applications we give alternative proofs of two results. The first one, due to the author and Toben, implies that a polar action does not admit exceptional orbits, if M is simply connected. The second result, due to Lytchak, implies that the orbits are closed and embedded if M is simply connected. All results are proved in the more general case of polar foliations.
Resumo:
We study germs of pairs of codimension one regular foliations in R(3) . We show that the discriminant of the pair determines the topological type of the pair. We also consider various classifications of the singularities of the discriminant.
Resumo:
We investigate in this paper the topological stability of pairs (omega, X), where w is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by omega.
Resumo:
We study smooth foliations on the solid torus S1×D2 having S1×{0} and S1×∂D2 as the only compact leaves and S1×{0} as singular set. We show that all other leaves can only be cylinders or planes, and give necessary conditions for the foliation to be a suspension of a diffeomorphism of the disc. © 2013 Elsevier B.V.
Resumo:
We discuss the geometry of the pair of foliations on a solid torus given by the Reeb foliation together with discs transverse to the boundary of the torus.
Resumo:
We show that if N, an open connected n-manifold with finitely generated fundamental group, is C-2 foliated by closed planes, then pi(1)(N) is a free group. This implies that if pi(1)(N) has an abelian subgroup of rank greater than one, then F has at least a nonclosed leaf. Next, we show that if N is three dimensional with fundamental group abelian of rank greater than one, then N is homeomorphic to T-2 x R. Furthermore, in this case we give a complete description of the foliation.
Resumo:
A singular Riemannian foliation F on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Sigma, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of H : M -> Sigma, coincide with the level sets of a smooth map H: M -> Sigma, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
Resumo:
The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.
Resumo:
Let Gamma subset of SL2(Z) be a principal congruence subgroup. For each sigma is an element of SL2(Z), we introduce the collection A(sigma)(Gamma) of modular Hecke operators twisted by sigma. Then, A(sigma)(Gamma) is a right A(Gamma)-module, where A(Gamma) is the modular Hecke algebra introduced by Connes and Moscovici. Using the action of a Hopf algebra h(0) on A(sigma)(Gamma), we define reduced Rankin-Cohen brackets on A(sigma)(Gamma). Moreover A(sigma)(Gamma) carries an action of H 1, where H 1 is the Hopf algebra of foliations of codimension 1. Finally, we consider operators between the levels A(sigma)(Gamma), sigma is an element of SL2(Z). We show that the action of these operators can be expressed in terms of a Hopf algebra h(Z).
Resumo:
O trabalho foi desenvolvido no litoral norte do estado de São Paulo, onde ocorrem boas exposições de rochas intrusivas da porção meridional do Enxame de Diques da Serra do Mar, de idade eocretácica. O objetivo principal da dissertação é caracterizar os regimes tectônicos associados à colocação e à deformação de diques máficos na área de São Sebastião (SP) e sua distribuição espacial, a partir de interpretações de imagens de sensores remotos, análise de dados estruturais de campo e descrição petrográfica das rochas ígneas. A área apresenta grande complexidade no tocante ao magmatismo, uma vez que ocorrem diques de diabásios toleítico e alcalino, lamprófiro e rochas alcalinas félsicas como fonolitos, traquitos e sienitos, estes sob a forma diques, sills e plugs. Os diabásios toleíticos tem idades em torno 134 Ma, correlatas com o início do rifteamento sul-atlântico, enquanto que as rochas alcalinas datam de 86 Ma e estão relacionadas com um magmatismo intraplaca posterior. Os lineamentos estruturais orientam-se majoritariamente na direção ENE-WSW, paralela às foliações metamórficas e zonas de cisalhamento observadas no campo e descritas na literatura, referentes ao Domínio Costeiro da Faixa Ribeira. Os diques se orientam na direção NE-SW, com azimute semelhante porém ângulos de mergulho discordantes da foliação em grande parte da área, onde as foliações são de baixo ângulo. Um segundo conjunto de lineamentos orientado NW-SE ocorre como um importante conjunto de fraturas que cortam tanto as rochas do embasamento proterozóico quanto as rochas alcalinas neocretácicas. Diques com esta orientação são escassos. Um terceiro conjunto NNE-SSW ocorre na porção oeste da área, associado à presença de diques de diabásio que por vezes mostram indicadores de movimentação sinistral. A análise cinemática dos diques mostra um predomínio de distensão pura durante sua colocação, com um tensor de compressão mínima de orientação NW-SE, ortogonal ao principal trend dos diques. Componentes direcionais, por vezes ambíguas, são comumente observadas, com um discreto predomínio de componente sinistral. O mesmo padrão cinemático é observado para os diques toleíticos e para os alcalinos, sugerindo que o campo de tensões local pouco variou durante o Cretáceo. Embora o embasamento não tenha sido diretamente reativado durante a colocação dos diques, sua anisotropia pode ter controlado de certa forma a orientação do campo de tensões local durante o Cretáceo. Os mapas geofísicos da bacia de Santos existentes na literatura sugerem certo paralelismo entre as estruturas observadas na área de estudo e aquelas interpretadas na bacia. As estruturas NNE-SSW são paralelas ao trend das sub-bacias e ao gráben de Merluza, enquanto que as estruturas NW-SE são paralelas a zonas de transferência descritas na literatura.
Resumo:
La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante.