6 resultados para foldamer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies reveal that the incorporation of meta-amino benzoic acid in the middle of a helix forming hexapeptide sequence such as in peptide I Boc-Ile(1)-Aib(2)-Val(3)-m-ABA(4)-Ile(5)-Aib(6)-Leu(7)-OMe (Aib: alpha-amino isobutyric acid: m-ABA: meta-amino benzoic acid) breaks the helix propagation to produce a turn-linker-turn (T-L-T) foldamer in the solid state. In the crystalline state two conformational isomers of peptide I self-assemble in antiparallel fashion through intermolecular hydrogen bonds and aromatic pi-pi interactions to form a molecular duplex. The duplexes are further interconnected through intermolecular hydrogen bonds to form a layer of peptides. The layers are stacked one on top of the other through van der Waals interactions to form hydrophilic channels filled with solvent methanol. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies and solvent dependent NMR titration reveal that the designed pepticles I and 11, Boc-Xx(1)-Aib(2)-Yy(3)-NH(CH2)(2)NH-Yy(3)-Aib(2)-Xx(1)-Boc, where Xx and Yy are lie and Leu in peptide I and Leu and Val in peptide 11, respectively, fold into a turn-linker-turn (T-L-T) conformation both in the solid state and in solution. In the crystalline state the T-L-T foldamers; of peptide I and II self-assemble to form a three-dimensional framework of channels. The insides of the channels are hydrophilic and found to contain solvent CHCl3 hydrogen bonded to exposed C=O of Aib located at the turn regions. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induced conformational change provides a powerful mechanism to modulate the structure and function of molecules. Here we describe the synthesis of chiral, surface-functionalized oligomeric pyridine/imidazolidin-2-one foldamers, and interrogate their acid-mediated transition between linear and helical topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemists have long sought to extrapolate the power of biological catalysis and recognition to synthetic systems. These efforts have focused largely on low molecular weight catalysts and receptors; however, biological systems themselves rely almost exclusively on polymers, proteins and RNA, to perform complex chemical functions. Proteins and RNA are unique in their ability to adopt compact, well-ordered conformations, and specific folding provides precise spatial orientation of the functional groups that comprise the “active site”. These features suggest that identification of new polymer backbones with discrete and predictable folding propensities (“foldamers”) will provide a basis for design of molecular machines with unique capabilities. The foldamer approach complements current efforts to design unnatural properties into polypeptides and polynucleotides. The aim of this thesis is the synthesis and conformational studies of new classes of foldamers, using a peptidomimetic approach. Moreover their attitude to be utilized as ionophores, catalysts, and nanobiomaterials were analyzed in solution and in the solid state. This thesis is divided in thematically chapters that are reported below. It begins with a very general introduction (page 4) which is useful, but not strictly necessary, to the expert reader. It is worth mentioning that paragraph I.3 (page 22) is the starting point of this work and paragraph I.5 (page 32) isrequired to better understand the results of chapters 4 and 5. In chapter 1 (page 39) is reported the synthesis and conformational analysis of a novel class of foldamers containing (S)-β3-homophenylglycine [(S)-β3-hPhg] and D- 4-carboxy-oxazolidin-2-one (D-Oxd) residues in alternate order is reported. The experimental conformational analysis performed in solution by IR, 1HNMR, and CD spectroscopy unambiguously proved that these oligomers fold into ordered structures with increasing sequence length. Theoretical calculations employing ab initio MO theory suggest a helix with 11-membered hydrogenbonded rings as the preferred secondary structure type. The novel structures enrich the field of peptidic foldamers and might be useful in the mimicry of native peptides. In chapter 2 cyclo-(L-Ala-D-Oxd)3 and cyclo-(L-Ala-DOxd) 4 were prepared in the liquid phase with good overall yields and were utilized for bivalent ions chelation (Ca2+, Mg2+, Cu2+, Zn2+ and Hg2+); their chelation skill was analyzed with ESI-MS, CD and 1HNMR techniques and the best results were obtained with cyclo-(L-Ala-D-Oxd)3 and Mg2+ or Ca2+. Chapter 3 describes an application of oligopeptides as catalysts for aldol reactions. Paragraph 3.1 concerns the use of prolinamides as catalysts of the cross aldol addition of hydroxyacetone to aromatic aldeydes, whereas paragraphs 3.2 and 3.3 are about the catalyzed aldol addition of acetone to isatins. By means of DFT and AIM calculations, the steric and stereoelectronic effects that control the enantioselectivity in the cross-aldol addition of acetone to isatin catalysed by L-proline have been studied, also in the presence of small quantities of water. In chapter 4 is reported the synthesis and the analysis of a new fiber-like material, obtained from the selfaggregation of the dipeptide Boc-L-Phe-D-Oxd-OBn, which spontaneously forms uniform fibers consisting of parallel infinite linear chains arising from singleintermolecular N-H···O=C hydrogen bonds. This is the absolute borderline case of a parallel β-sheet structure. Longer oligomers of the same series with general formula Boc-(L-Phe-D-Oxd)n-OBn (where n = 2-5), are described in chapter 5. Their properties in solution and in the solid state were analyzed, in correlation with their attitude to form intramolecular hydrogen bond. In chapter 6 is reported the synthesis of imidazolidin-2- one-4-carboxylate and (tetrahydro)-pyrimidin-2-one-5- carboxylate, via an efficient modification of the Hofmann rearrangement. The reaction affords the desired compounds from protected asparagine or glutamine in good to high yield, using PhI(OAc)2 as source of iodine(III).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionalized diphenylalkynes provide a template for the presentation of protein-like surfaces composed of multistrand β-sheets. The conformational properties of three-, four-, and seven-stranded systems have been investigated in the solid- and solution-state. This class of molecule may be suitable for the mediation of therapeutically relevant protein-protein interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many therapeutically relevant protein-protein interactions contain hot-spot regions on secondary structural elements, which contribute disproportionately to binding enthalpy. Mimicry of such α-helical regions has met with considerable success, however the analogous approach for the β-strand has received less attention. Presented herein is a foldamer for strand mimicry in which dipolar repulsion is a central determinant of conformation. Computation as well as solution- and solid-phase data are consistent with an ensemble weighted almost exclusively in favor of the desired conformation.