995 resultados para flexibility method
Resumo:
Trusses are structural systems commonly used in projects, being employed mainly in roof structures, present in most rural buildings. The design of trusses, as well as other structural systems, requires the determination of displacements, strains and stresses. However, the project is developed from an ideal model of calculation, considering free rotation between the elements of a connection. This paper presents a computer program for the analysis of bidimensional wooden trusses with connections formed with two screws per node. The formulation is based on the flexibility method, taking into account the influence of the effect of semi-rigid connections formed by two screws. An example of a structure is presented and analyzed by the program developed here, highlighting the importance of behavior analysis on semi-rigid connections.
Resumo:
This paper presents a scientific development to address the current absence of a convenient technique to identify the ductile to brittle transition of bentonite clay mats. The instrumented indentation and 3-point bending tests were performed on different liquid polymer hydrated bentonite clay mats at varying moisture content. Properties measured include modified Brinell Hardness Number (BHN) and elastic structural stiffness (EI). The dependence of flexural stiffness on moisture content is demonstrated to conform to a best power function variation. The ductile to brittle transition of clay mat is affected primarily by the change in the moisture content and for the clay mat to remain flexible, critical moisture content of 1.7 times of its plastic limit is required. Results also indicate that a strong correlation between indentation hardness and the structural stiffness. The subsequent outcome in the development of a portable quality control device to monitor the acceptable moisture content level to ensure flexibility of the clay mats was also described in this paper.
Resumo:
PURPOSE: The objective was to describe the results of the injection of immotile spermatozoa with flexible tails when only immotile spermatozoa are present in the semen sample. METHODS: A retrospective study was conducted to analyze the procedure results for 10 couples who participated in our intracytoplasmic sperm injection program. The sperm tail was considered flexible when it moved up and down independently of the head movement, and it was considered inflexible when the movement occurred together (tail plus head). The fertilization and pregnancy rate were analyzed. RESULTS: The normal fertilization rate (presence of 2 pronuclei) was 30.3% (40/132), and the abnormal fertilization rate (presence of less than or more than 2 pronuclei) was 6.81% (9/132). A total of 52 embryos were obtained with 9 transfer procedures performed (pregnancy rate: 11.12%). CONCLUSIONS: The sperm tail flexibility test (STFT) is an easy and cost-effective way for selecting viable immotile spermatozoa and can be used as an alternative method for determining the viability of spermatozoa. This test seems to be a simple and risk-free method when compared to the swelling test.
Resumo:
Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS). Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject's dominant leg was measured for straight leg raise (SLR) range of motion (ROM) before and after interventions. Data were analyzed with a 3 × 2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested.
Resumo:
Accurate modeling of flow instabilities requires computational tools able to deal with several interacting scales, from the scale at which fingers are triggered up to the scale at which their effects need to be described. The Multiscale Finite Volume (MsFV) method offers a framework to couple fine-and coarse-scale features by solving a set of localized problems which are used both to define a coarse-scale problem and to reconstruct the fine-scale details of the flow. The MsFV method can be seen as an upscaling-downscaling technique, which is computationally more efficient than standard discretization schemes and more accurate than traditional upscaling techniques. We show that, although the method has proven accurate in modeling density-driven flow under stable conditions, the accuracy of the MsFV method deteriorates in case of unstable flow and an iterative scheme is required to control the localization error. To avoid large computational overhead due to the iterative scheme, we suggest several adaptive strategies both for flow and transport. In particular, the concentration gradient is used to identify a front region where instabilities are triggered and an accurate (iteratively improved) solution is required. Outside the front region the problem is upscaled and both flow and transport are solved only at the coarse scale. This adaptive strategy leads to very accurate solutions at roughly the same computational cost as the non-iterative MsFV method. In many circumstances, however, an accurate description of flow instabilities requires a refinement of the computational grid rather than a coarsening. For these problems, we propose a modified iterative MsFV, which can be used as downscaling method (DMsFV). Compared to other grid refinement techniques the DMsFV clearly separates the computational domain into refined and non-refined regions, which can be treated separately and matched later. This gives great flexibility to employ different physical descriptions in different regions, where different equations could be solved, offering an excellent framework to construct hybrid methods.
Resumo:
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior-inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.
Resumo:
Systems suppliers are focal actors in mechanical engineering supply chains, in between general contractors and component suppliers. This research concentrates on the systems suppliers’ competitive flexibility, as a competitive advantage that the systems supplier gains from independence from the competitive forces of the market. The aim is to study the roles that power, dependence relations, social capital, and interorganizational learning have on the competitive flexibility. Research on this particular theme is scarce thus far. The research method applied here is the inductive multiple case study. Interviews from four case companies were used as main source of the qualitative data. The literature review presents previous literature on subcontracting, supply chain flexibility, supply chain relationships, social capital and interorganizational learning. The result of this study are seven propositions and consequently a model on the effects that the dominance of sales of few customers, power of competitors, significance of the manufactured system in the end product, professionalism in procurement and the significance of brand products in the business have on the competitive flexibility. These relationships are moderated by either social capital or interorganizational learning. The main results obtained from this study revolve around social capital and interorganizational learning, which have beneficial effects on systems suppliers’ competitive flexibility, by moderating the effects of other constructs of the model. Further research on this topic should include quantitative research to provide the extent to which the results can be reliably generalized. Also each construct of the model gives possible focus for more thorough research.
Resumo:
High-throughput screening of cellular effects of RNA interference (RNAi) libraries is now being increasingly applied to explore the role of genes in specific cell biological processes and disease states. However, the technology is still limited to specialty laboratories, due to the requirements for robotic infrastructure, access to expensive reagent libraries, expertise in high-throughput screening assay development, standardization, data analysis and applications. In the future, alternative screening platforms will be required to expand functional large-scale experiments to include more RNAi constructs, allow combinatorial loss-of-function analyses (e.g. genegene or gene-drug interaction), gain-of-function screens, multi-parametric phenotypic readouts or comparative analysis of many different cell types. Such comprehensive perturbation of gene networks in cells will require a major increase in the flexibility of the screening platforms, throughput and reduction of costs. As an alternative for the conventional multi-well based high-throughput screening -platforms, here the development of a novel cell spot microarray method for production of high density siRNA reverse transfection arrays is described. The cell spot microarray platform is distinguished from the majority of other transfection cell microarray techniques by the spatially confined array layout that allow highly parallel screening of large-scale RNAi reagent libraries with assays otherwise difficult or not applicable to high-throughput screening. This study depicts the development of the cell spot microarray method along with biological application examples of high-content immunofluorescence and phenotype based cancer cell biological analyses focusing on the regulation of prostate cancer cell growth, maintenance of genomic integrity in breast cancer cells, and functional analysis of integrin protein-protein interactions in situ.
Resumo:
Investment decision-making on far-reaching innovation ideas is one of the key challenges practitioners and academics face in the field of innovation management. However, the management practices and theories strongly rely on evaluation systems that do not fit in well with this setting. These systems and practices normally cannot capture the value of future opportunities under high uncertainty because they ignore the firm’s potential for growth and flexibility. Real options theory and options-based methods have been offered as a solution to facilitate decision-making on highly uncertain investment objects. Much of the uncertainty inherent in these investment objects is attributable to unknown future events. In this setting, real options theory and methods have faced some challenges. First, the theory and its applications have largely been limited to market-priced real assets. Second, the options perspective has not proved as useful as anticipated because the tools it offers are perceived to be too complicated for managerial use. Third, there are challenges related to the type of uncertainty existing real options methods can handle: they are primarily limited to parametric uncertainty. Nevertheless, the theory is considered promising in the context of far-reaching and strategically important innovation ideas. The objective of this dissertation is to clarify the potential of options-based methodology in the identification of innovation opportunities. The constructive research approach gives new insights into the development potential of real options theory under non-parametric and closeto- radical uncertainty. The distinction between real options and strategic options is presented as an explanans for the discovered limitations of the theory. The findings offer managers a new means of assessing future innovation ideas based on the frameworks constructed during the course of the study.
Resumo:
Stretching has been widely used to increase the range of motion. We assessed the effects of a stretching program on muscle-tendon length, flexibility, torque, and activities of daily living of institutionalized older women. Inclusion/exclusion criteria were according to Mini-Mental State Examination (MMSE) (>13), Barthel Index (>13) and Lysholm Scoring Scale (>84). Seventeen 67 ± 9 year-old elderly women from a nursing home were divided into 2 groups at random: the control group (CG, N = 9) participated in enjoyable cultural activities; the stretching group (SG, N = 8) performed active stretching of hamstrings, 4 bouts of 1 min each. Both groups were supervised three times per week over a period of 8 weeks. Peak torque was assessed by an isokinetic method. Both groups were evaluated by a photogrammetric method to assess muscle-tendon length of uni- and biarticular hip flexors and hamstring flexibility. All measurements were analyzed before and after 8 weeks by two-way ANOVA with the level of significance set at 5%. Hamstring flexibility increased by 30% in the SG group compared to pre-training (76.5 ± 13.0° vs 59.5 ± 9.0°, P = 0.0002) and by 9.2% compared to the CG group (76.5 ± 13.0° vs 64.0 ± 12.0°, P = 0.0018). Muscle-tendon lengths of hip biarticular flexor muscles (124 ± 6.8° vs 118.3 ± 7.6°, 5.0 ± 7.0%, P = 0.031) and eccentric knee extensor peak torque were decreased in the CG group compared to pre-test values (-49.4 ± 16.8 vs -60.5 ± 18.9 Nm, -15.7 ± 20%, P = 0.048). The stretching program was sufficient to increase hamstring flexibility and a lack of stretching can cause reduction of muscle performance.
Resumo:
The tagged microarray marker (TAM) method allows high-throughput differentiation between predicted alternative PCR products. Typically, the method is used as a molecular marker approach to determining the allelic states of single nucleotide polymorphisms (SNPs) or insertion-deletion (indel) alleles at genomic loci in multiple individuals. Biotin-labeled PCR products are spotted, unpurified, onto a streptavidin-coated glass slide and the alternative products are differentiated by hybridization to fluorescent detector oligonucleotides that recognize corresponding allele-specific tags on the PCR primers. The main attractions of this method are its high throughput (thousands of PCRs are analyzed per slide), flexibility of scoring (any combination, from a single marker in thousands of samples to thousands of markers in a single sample, can be analyzed) and flexibility of scale (any experimental scale, from a small lab setting up to a large project). This protocol describes an experiment involving 3,072 PCRs scored on a slide. The whole process from the start of PCR setup to receiving the data spreadsheet takes 2 d.
Resumo:
A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The assessment of building energy efficiency is one of the most effective measures for reducing building energy consumption. This paper proposes a holistic method (HMEEB) for assessing and certifying building energy efficiency based on the D-S (Dempster-Shafer) theory of evidence and the Evidential Reasoning (ER) approach. HMEEB has three main features: (i) it provides both a method to assess and certify building energy efficiency, and exists as an analytical tool to identify improvement opportunities; (ii) it combines a wealth of information on building energy efficiency assessment, including identification of indicators and a weighting mechanism; and (iii) it provides a method to identify and deal with inherent uncertainties within the assessment procedure. This paper demonstrates the robustness, flexibility and effectiveness of the proposed method, using two examples to assess the energy efficiency of two residential buildings, both located in the ‘Hot Summer and Cold Winter’ zone in China. The proposed certification method provides detailed recommendations for policymakers in the context of carbon emission reduction targets and promoting energy efficiency in the built environment. The method is transferable to other countries and regions, using an indicator weighting system to modify local climatic, economic and social factors.