965 resultados para flame retardant additives


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyphosphate esters were synthesized by the solution polycondensation of bisphenols with aryl phosphorodichloridates. The polymers were characterized by i.r. and 1H, 13C and 31P n.m.r. spectroscopy. The molecular weights were determined by end group analysis using 1H and 31P n.m.r. spectral data. The thermal stability of the polymers was analysed by thermogravimetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyphosphate esters based on bisphenol A and alkyl phosphorodichloridates have been synthesized and characterized by i.r. and n.m.r. spectroscopy. The molecular weights were calculated from 31P n.m.r. The thermal stability of the polymers were analysed by thermogravimetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of flame retardant polymers, viz. polyarylazo phosphate and phosphoramide esters, were synthesized by solution polycondensation of 4,4′-dihydroxyazobenzene with various aryl phosphorodichlorides and aryl phosphoramidic dichlorides. They were characterized by i.r. 1H-, 13C- and 31P-NMR spectroscopy. The molar mass, thermal and flammability studies were carried out by viscometry, thermogravimetry and limiting oxygen index respectively to examine the influence of the phosphate and phosphoramide linkages. The polyphosphoramide esters possess better thermal and flammability characteristics than the polyphosphate esters.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flame-retardant poly(pyromellitic imide aryl phosphoramide-ester)s were synthesized by interfacial polycondensation of N,N?-bis(p-hydroxyphenyl)pyromellitic diimide with aryl phosphoramidic dichlorides. The polymers were characterized by IR and 1H-NMR spectroscopy. The molecular composition was confirmed by elemental analysis. The thermal stability and flammability of the polymers were studied by thermogravimetry and limiting oxygen index, respectively. Durch Grenzflächen-Polykondensation von N,N?-bis(4-hydroxyphenyl)pyromellitsäurediimid mit Dichloriden verschiedener Phosphoramide wurden flammhemmende Polymere erhalten. Diese wurden mittels IR- und 1H-NMR-Spektroskopie und Elementaranalyse charakterisiert. Thermische Stabilität und Entflammbarkeit wurden thermogravimetrisch bzw. durch Bestimmung des Sauerstoff-Indexes untersucht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyphosphate esters have been used as polymeric flame retardant plasticizers in poly(vinyl chloride); thermal and flammability studies were carried out to evaluate their efficiencies as fire retardants. A comparison is also made on the fire retardancy of the conventional simple phosphates with that of the polyphosphates as novel fire retardant plasticizers for PVC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of photo-crosslinkable flame retardant arylphosphate ester polymers based on diarylidenecycloalkanone groups has been synthesized by polymerizing 2,5-divanillylidene cyclopentanone and 2,6-divanillylidenecyclohexanone with various arylphosphorodichloridates by interfacial polycondensation using a phase transfer catalyst. The resulting polymers were characterized by inherent viscosity, g.p.c., i.r., H-1, C-13, P-31 n.m.r. spectroscopy. These polymers were studied for their photochemical and flame retardant properties. The divanillylidene cycloalkanone group in the chain function as photoactive centres while arylphosphate ester groups impart flame retardancy. The photo-crosslinking proceeds via 2 pi + 2 pi cycloaddition reaction of the divanillylidene cycloalkanone moieties. The crosslinking rate, thermal stability and flammability characteristics of the polymers increase with decrease in the size of the cycloalkanone ring. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of multielement flame-retardant plasticizers containing polyethylene stibinite phosphate esters have been prepared by bulk polymerization from ethylene glycol with various antimony (III) aryloxydichlorides and arylphosphorodichloridates possessing various combinations of substituent [Cl,Br,NO2]. All the polymers are pink-coloured viscous fluids. They were characterized by inherent viscosity, density, IR, H-1, C-13 and P-31 NMR spectroscopy. The thermal behaviour of the polymers was compared by thermogravimetric analysis and correlated with their structures. The flammability studies were carried out by the limiting oxygen index test. The polymers containing P, Sb, N and Pr elements in their backbone show superior thermal-and flame-retardant characteristics than the other polymers. A comparative study was carried out with one of the synthesized polymers as a polymeric flame-retardant additive to plasticized PVC. The results showed improved LOI and mechanical properties to that of the conventional flame-retardant additive composition. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diethyl allyl phosphate (DEAP) monomer has been synthesized, and characterized, using H-1 NMR and direct ionization mass spectrometric (DI-MS) techniques. It was free-radically polymerized to yield the poly(diethyl allyl phosphate) (PDEAP). The direct pyrolysis-mass spectrometric (DP-MS) analysis of the PDEAP revealed that it undergoes thermal degradation to yield mainly the monomer. Utility of PDEAP as a potent flame-retardant additive in polystyrene (PS) and poly(methyl methacrylate) (PMMA) has also been established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the influence of triethyl and tributyl phosphite (TEP and TBP) additives on the electrochemical performance of lithium-ion cells. The cell performance of the TEP- and TBP-containing electrolytes was evaluated by cyclic voltammetry, thermogravimetric analysis, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The flammability of the electrolytes was also investigated by measuring the self-extinguishing time of the electrolytes. The results showed that the TEP and TBP additives suppressed the flammability of the electrolyte, with a significant improvement in cell performance observed for the TEP additive. In addition, TEP and TBP additives improved the thermal stability of the battery and its electrochemical cell performance. Overall, 5 wt% TEP and TBP can be used as a flame-retarding additive to improve the cell performance of Li-ion batteries due to the decrease in cell impedance and SEI formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the properties of 1 wt.% vinylene carbonate, vinyl ethylene carbonate, and diphenyloctyl phosphate additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. The additive electrolytes were dominant both in surface formation and internal resistance. In particular, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that diphenyloctyl phosphate is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.