951 resultados para fatty liver-disease
Resumo:
Nonalcoholic fatty liver disease (NAFLD) is common among subjects who undergo bariatric surgery and its postsurgical improvement has been reported. This study aimed to determine the evolution of liver disease evaluated through NAFLD fibrosis score 12 months after surgery. It is a prospective cohort study which evaluated patients immediately before and 12 months following Roux-en-Y gastric bypass (RYGB). Mean score decreased from 1.142 to 0.066; surgery led to a resolution rate of advanced fibrosis of 55 %. Resolution was statistically associated with female gender, percentage of excess weight loss, postsurgical body mass index, postsurgical platelet count, and diabetes resolution. As previously reported by studies in which postsurgical biopsies were performed, RYGB leads to a great resolution rate of liver fibrosis. Since postsurgical biopsy is not widely available and has a significant risk, calculation of NAFLD fibrosis score is a simple tool to evaluate this evolution through a noninvasive approach.
Resumo:
Background and Aims: Although the metabolic risk factors for non-alcoholic fatty liver disease (NAFLD) progression have been recognized, the role of genetic susceptibility remains a field to be explored. The aim of this study was to examine the frequency of two polymorphisms in Brazilian patients with biopsy-proven simple steatosis or non-alcoholic steatohepatitis (NASH): -493 G/T in the MTP gene, which codes the protein responsible for transferring triglycerides to nascent apolipoprotein B, and -129 C/T in the GCLC gene, which codes the catalytic subunit of glutamate-cystein ligase in the formation of glutathione. Methods: One hundred and thirty-one biopsy-proven NAFLD patients (n = 45, simple steatosis; n = 86, NASH) and 141 unrelated healthy volunteers were evaluated. Genomic DNA was extracted from peripheral blood cells, and the -129 C/T polymorphism of the GCLC gene was determined by restriction fragment length polymorphism (RFLP). The -493 G/T polymorphism of the MTP gene was determined by direct sequencing of the polymerase chain reaction products. Results: The presence of at least one T allele in the -129 C/T polymorphism of the GCLC gene was independently associated with NASH (odds ratio 12.14, 95% confidence interval 2.01-73.35; P = 0.007), whereas, the presence of at least one G allele in the -493 G/T polymorphism of the MTP gene differed slightly between biopsy-proven NASH and simple steatosis. Conclusion: This difference clearly warrants further investigation in larger samples. These two polymorphisms could represent an additional factor for consideration in evaluating the risk of NAFLD progression. Further studies involving a larger population are necessary to confirm this notion.
Resumo:
Background: Age, developmental stage and gender are risk factors for paediatric non-alcoholic fatty liver disease (NAFLD). Aims: The aim of this study was to identify differences in clinical or laboratory variables between sexes in adolescents with NAFLD. Methodology: Ninety obese adolescents including 36 males and 54 females were evaluated. Inclusion criteria for this study were a Body Mass Index above the 95th percentile, as set forth by the National Center for Health Statistics, and an age of 10-19 years. A clinical and laboratory evaluation was conducted for all adolescents. Results: The variables that were found to be predictive of NAFLD in adolescence were visceral fat, Aminotransferase, Gamma-Glutamyl Transferase, triglyderides, cholesterol and LDL-cholesterol. We also observed that cholesterol and LDL-cholesterol variables were influenced by gender, i.e. there was a significant statistical difference in the values of these variables between male and female adolescents. With regard to cholesterol serum concentrations, the risk was 6.99 times greater for females, compared with 1.2 times for males; and for LDL-cholesterol serum concentrations the risk was 8.15 times greater for females, compared with and 1.26 times for males. Conclusion: Female adolescents with NAFLD showed a significantly different metabolic behaviour than males.
Resumo:
Background/aim Regulation of apoptosis in non-alcoholic fatty liver disease (NAFLD) has been a theme of growing debate. Although no other study assessed the role of survivin in NAFLD, its expression has been reported in hepatic carcinogenesis because of other aetiological factors with relevant discrepancies. The aim of this study was to assess the pattern of survivin immunoexpression by tissue microarray along the whole spectrum of NAFLD, including non-alcoholic steatohepatitis (NASH)-related hepatocelular carcinoma (HCC). Methods Liver biopsies from 56 patients with NAFLD were evaluated: 18 with steatosis, 21 non-cirrhotic NASH, 10 NASH-related cirrhosis, seven NASH-related HCC, as compared with 71 HCC related to other causes and with 12 normal livers. Results Survivin immunoexpression in NAFLD was restricted to cytoplasm and was found to be progressively lower in advanced stages, including cirrhosis and HCC: steatosis vs NASH-related cirrhosis (P=0.0243); steatosis vs NASH-related HCC (P=0.0010); NASH vs NASH-related cirrhosis (P=0.0318); and NASH vs NASH-related HCC (P=0.0007), thus suggesting a deregulation of apoptosis from NAFLD towards HCC. Interestingly, survivin immunoreactivity in NASH-related HCC was also found to be significantly lower than in HCC related to other causes (P < 0.05). Remarkably, nuclear staining for survivin was not detected in any case of NAFLD, contrasting to its presence in all other cases of HCC. Conclusions Survivin immunoexpression in NASH-related HCC is herein originally found substantially different than in HCC related to other causes, thus requiring further studies to elucidate the role of survivin in human NAFLD progression.
Resumo:
The prevalence of cigarette smoking (CS) is increased among obese subjects, who are susceptible to develop nonalcoholic fatty liver disease (NAFLD). We investigated the hepatic effects of CS in control and obese rats. Control and obese Zucker rats were divided into smokers and nonsmokers (n = 12 per group). Smoker rats were exposed to 2 cigarettes/day, 5 days/week for 4 weeks. The effects of CS were assessed by biochemical analysis, hepatic histological examination, immunohistochemistry, and gene expression analysis. Phosphorylation of AKT and extracellular signal-regulated kinase (ERK) and quantification of carbonylated proteins were assessed by western blotting. As expected, obese rats showed hypercholesterolemia, insulin resistance, and histological features of NAFLD. Smoking did not modify the lipidic or glucidic serum profiles. Smoking increased alanine aminotransferase serum levels and the degree of liver injury in obese rats, whereas it only induced minor changes in control rats. Importantly, CS increased the histological severity of NAFLD in obese rats. We also explored the potential mechanisms involved in the deleterious effects of CS. Smoking increased the degree of oxidative stress and hepatocellular apoptosis in obese rats, but not in controls. Similarly, smoking increased the hepatic expression of tissue inhibitor of metalloproteinase-1 and procollagen-alpha2(I) in obese rats, but not in controls. Finally, smoking regulated ERK and AKT phosphorylation. The deleterious effects of CS were not observed after a short exposure (5 days). Conclusion: CS causes oxidative stress and worsens the severity of NAFLD in obese rats. Further studies should assess whether this finding also occurs in patients with obesity and NAFLD. (HEPATOLOGY 2010;51:1567-1576.)
Resumo:
Background Little progress has been made to identify the central neuroendocrine pathway involved in the energy intake control in nonalcoholic fatty liver disease (NAFLD) patients. Objective To assess the influence of orexigenic neuropeptides in the nutritional aspects of NAFLD obese adolescents submitted to a long-term interdisciplinary approach. Methods Fifty adolescents aged 15-19 years, with body mass index at least 95th percentile, consisting of 25 patients without NAFLD and 25 with NAFLD. The NAFLD diagnosis was determined by ultrasonography. Blood samples were collected to analyze glycemia, hepatic transaminases, and lipid profile. Insulin resistance was estimated by Homeostasis Model Assessment Insulin Resistance Index. Neuropeptide Y (NPY) and agouti related protein concentrations were measured by enzyme-linked immunosorbent assay. Analyses of food intake were made by 3 days recordatory inquiry. Results At baseline conditions, the patients with NAFLD had significantly higher values of body mass, body mass index, visceral fat, triglycerides, VLDL-C, and hepatic transaminases. After the long-term intervention, they presented a significant reduction in these parameters. In both the groups, it was observed a significant decrease in energy intake, macronutrients and dietetic cholesterol. Only the patients with NAFLD presented a positive correlation between the saturated fatty acids intake and the orexigenic neuropeptides NPY and agouti related protein, and carbohydrate with NPY. Indeed, it was observed a positive correlation between energy intake, lipid (%) and saturated fatty acids with visceral fat accumulation. Conclusion Our findings showed an important influence of diet composition in the orexigenic system, being essential consider that the excessive saturated fatty acids intake could be a determinant factor to increase nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 22:557-563 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.
Resumo:
PURPOSE OF REVIEW: The prevalence of nonalcoholic fatty liver disease is increasing worldwide and there is strong evidence that dietary factors play a role in its pathogenesis. The present review aims to provide a better understanding of how carbohydrates and other macronutrients may affect the disease. RECENT FINDINGS: The effects of carbohydrates on the development of nonalcoholic fatty liver disease differ depending upon the carbohydrate type; high-glycemic index foods are related to increased hepatic fat in both rodents and humans. Similarly, simple carbohydrates, such as fructose, stimulate hepatic de-novo lipogenesis and decrease lipid oxidation, thus leading to increased fat deposition. The underlying mechanisms may involve the activation of transcription factors. Fat intake broadly leads to hepatic fat deposition in rodents but few data are available on humans. Both carbohydrates and fat trigger inflammatory factors, which are closely related to metabolic disorders and nonalcoholic fatty liver disease. Lifestyle interventions appear to be the most appropriate first-line treatment for nonalcoholic fatty liver disease. SUMMARY: There is strong evidence that the diet may affect the development of nonalcoholic fatty liver disease. Although simple carbohydrates are clearly shown to have deleterious effects in humans, the role of fat remains controversial. Further studies will be required to evaluate the effects of macronutrient composition on the development of nonalcoholic fatty liver disease.
Resumo:
Single-nucleotide polymorphisms within major histocompatibility class II (MHC II) genes have been associated with an increased risk of drug-induced liver injury. However, it has never been addressed whether the MHC II pathway plays an important role in the development of nonalcoholic fatty liver disease, the most common form of liver disease. We used a mouse model that has a complete knockdown of genes in the MHC II pathway (MHCII(Δ/Δ)). Firstly we studied the effect of high-fat diet-induced hepatic inflammation in these mice. Secondly we studied the development of carbon-tetra-chloride- (CCl4-) induced hepatic cirrhosis. After the high-fat diet, both groups developed obesity and hepatic steatosis with a similar degree of hepatic inflammation, suggesting no impact of the knockdown of MHC II on high-fat diet-induced inflammation in mice. In the second study, we confirmed that the CCl4 injection significantly upregulated the MHC II genes in wild-type mice. The CCl4 treatment significantly induced genes related to the fibrosis formation in wild-type mice, whereas this was lower in MHCII(Δ/Δ) mice. The liver histology, however, showed no detectable difference between groups, suggesting that the MHC II pathway is not required for the development of hepatic fibrosis induced by CCl4.
Resumo:
ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.
Resumo:
Fructose is mainly consumed with added sugars (sucrose and high fructose corn syrup), and represents up to 10% of total energy intake in the US and in several European countries. This hexose is essentially metabolized in splanchnic tissues, where it is converted into glucose, glycogen, lactate, and, to a minor extent, fatty acids. In animal models, high fructose diets cause the development of obesity, insulin resistance, diabetes mellitus, and dyslipidemia. Ectopic lipid deposition in the liver is an early occurrence upon fructose exposure, and is tightly linked to hepatic insulin resistance. In humans, there is strong evidence, based on several intervention trials, that fructose overfeeding increases fasting and postprandial plasma triglyceride concentrations, which are related to stimulation of hepatic de novo lipogenesis and VLDL-TG secretion, together with decreased VLDL-TG clearance. However, in contrast to animal models, fructose intakes as high as 200 g/day in humans only modestly decreases hepatic insulin sensitivity, and has no effect on no whole body (muscle) insulin sensitivity. A possible explanation may be that insulin resistance and dysglycemia develop mostly in presence of sustained fructose exposures associated with changes in body composition. Such effects are observed with high daily fructose intakes, and there is no solid evidence that fructose, when consumed in moderate amounts, has deleterious effects. There is only limited information regarding the effects of fructose on intrahepatic lipid concentrations. In animal models, high fructose diets clearly stimulate hepatic de novo lipogenesis and cause hepatic steatosis. In addition, some observations suggest that fructose may trigger hepatic inflammation and stimulate the development of hepatic fibrosis. This raises the possibility that fructose may promote the progression of non-alcoholic fatty liver disease to its more severe forms, i.e. non-alcoholic steatohepatitis and cirrhosis. In humans, a short-term fructose overfeeding stimulates de novo lipogenesis and significantly increases intrahepatic fat concentration, without however reaching the proportion encountered in non-alcoholic fatty liver diseases. Whether consumption of lower amounts of fructose over prolonged periods may contribute to the pathogenesis of NAFLD has not been convincingly documented in epidemiological studies and remains to be further assessed.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed.
Resumo:
Metabolic syndrome (MetS) is a disease composed of different risk factors such as obesity, type 2 diabetes or dyslipidemia. The prevalence of this syndrome is increasing worldwide in parallel with the rise in obesity. Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in western countries, affecting more than 30% of the general population. NAFLD encompasses a spectrum of liver manifestations ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, which may ultimately progress to hepatocellular carcinoma. There is accumulating evidence supporting an association between NAFLD and MetS. Indeed, NAFLD is recognized as the liver manifestation of MetS. Insulin resistance is increasingly recognized as a key factor linking MetS and NAFLD. Insulin resistance is associated with excessive fat accumulation in ectopic tissues, such as the liver, and increased circulating free fatty acids, which can further promote inflammation and endoplasmic reticulum stress. This in turn aggravates and maintains the insulin resistant state, constituting a vicious cycle. Importantly, evidence shows that most of the patients developing NAFLD present at least one of the MetS traits. This review will define MetS and NAFLD, provide an overview of the common pathophysiological mechanisms linking MetS and NAFLD, and give a perspective regarding treatment of these ever growing metabolic diseases.