926 resultados para external fixator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very little is known about the infl uence of the mechanical environment on the healing of large segmental defects. This partly reflects the lack of standardised, well characterised technologies to enable such studies. Here we report the design, construction and characterisation of a novel external fixator for use in conjunction with rat femoral defects. This device not only imposes a predetermined axial stiffness on the lesion, but also enables the stiffness to be changed during the healing process. The main frame of the fi xator consists of polyethylethylketone with titanium alloy mounting pins. The stiffness of the fi xator is determined by interchangeable connection elements of different thicknesses. Fixators were shown to stabilise 5 mm femoral defects in rats in vivo for at least 8 weeks during unrestricted cage activity. No distortion or infections, including pin infections, were noted. The healing process was simulated in vitro by inserting into a 5 mm femoral defect, materials whose Young’s moduli approximated those of the different tissues present in regenerating bone. These studies confirmed that, although the external fixator is the major determinant of axial stiffness during the early phase of healing, the regenerate within the lesion subsequently dominates this property. There is much clinical interest in altering the mechanics of the defect to enhance bone healing. Our data suggest that, if alteration of the mechanical environment is to be used to modulate the healing of large segmental defects, this needs to be performed before the tissue properties become dominant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to clinically and radiographically evaluate acute bone shortening followed by gradual lengthening in the treatment of large segmental tibia defects induced in seven clinically normal dogs. A circular external fixator was assembled with one proximal 5/8-circle ring, one middle ring and one distal ring connected with three rods. Thirty per cent of the tibia and fibula were removed in the middle and distal parts of the diaphyses, between the middle and distal rings. Acute bone shortening with compression of proximal and distal segments was performed. A subperiosteal osteotomy was performed between the half-ring and middle ring. Bone distraction started 7 days after surgery; after lengthening, the apparatus was left in place for 14 weeks for consolidation of regenerated bone. The frame was removed at the end of this period, and the dogs observed for four more weeks. Functional results were considered excellent in two, good in three and fair in the other two dogs. Bone regeneration within the distraction gap was obtained 14 weeks after neutral fixation period. We concluded that acute bone shortening followed by gradual lengthening by Ilizarov method can be used to treat extensive tibial defects in dogs, although it presents limb temporary abnormal limb shape and unequal length as early disadvantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To report stabilization of closed, comminuted distal metaphyseal transverse fractures of the left tibia and fibula in a tiger using a hybrid circular-linear external skeletal fixator. STUDY DESIGN: Clinical report. ANIMAL: Juvenile tiger (15 months, 90 kg). METHODS: From imaging studies, the tiger had comminuted distal metaphyseal transverse fractures of the left tibia and fibula, with mild caudolateral displacement and moderate compression. Multiple fissures extended from the fractures through the distal metaphyses, extending toward, but not involving the distal tibial and fibular physes. A hybrid circular-linear external skeletal fixator was applied by closed reduction, to stabilize the fractures. RESULTS: The fractures healed and the fixator was removed 5 weeks after stabilization. Limb length and alignment were similar to the normal contralateral limb at hospital discharge, 8 weeks after surgery. Two weeks later, the tiger had fractures of the right tibia and fibula and was euthanatized. Necropsy confirmed pathologic fractures ascribed to copper deficiency. CONCLUSION: Closed application of the hybrid construct provided sufficient stability to allow this 90 kg tiger's juxta-articular fractures to heal with minimal complications and without disrupting growth from the adjacent physes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To report use of a pinless external fixator (PEF) for unilateral mandibular fractures in 9 equids. STUDY DESIGN: Case series. ANIMALS: Equids (n=9) with unilateral mandibular fractures. METHODS: All fractures were stabilized with the AO/ASIF PEF using a minimum of 4 clamps, under general anesthesia. Fracture configuration, complications, outcome, and owner satisfaction were evaluated. RESULTS: All fractures were stabilized; 2 equids were euthanatized; 1 because of an inability to stand after surgery and 1 because of owner decision after PEF dislodgement. Seven repairs healed with good outcome and owner satisfaction. Complications included dislodgement of the PEF (3), bone sequestration (3), and weight loss (1). Drainage associated with repair resolved after removal of sequestra and clamps. CONCLUSIONS: Stabilization of unilateral mandibular fractures with the PEF in horses was minimally invasive with minimal risk of tooth root interference; however, after care is time consuming. CLINICAL RELEVANCE: PEF is an alternative technique for stabilizing unilateral mandibular fractures in equids.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An external fixation technique, using a circular fixator, to obtain arthrodesis was evaluated in 2 dogs with infected open lesions and soft tissue damage. In both cases, articular cartilage was curetted, and devitalized bone and necrotic soft tissue were removed. No bone graft was used. The wounds were maintained open and the dogs received postoperative antibiotic therapy. The arthrodesis site was compressed progressively as needed. Infection was eradicated and bony union was obtained in both dogs. It was concluded that the use of a circular fixator is an effective method to achieve arthrodesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the usefulness of type IIb external skeletal fixators with a transarticular pin in experimental tarsocrural arthrodesis. Twelve adult mongrel dogs of both sexes, ranging in age from two to five years and weighing 12 to 25kg, were used. The configuration of the fixator consisted in the application of a transarticular Steinmann pin and of centrally threaded pins to the proximal portion of the tibia and calcaneus and to the distal portion of the metatarsal bones. In addition, Schanz pins were inserted into the medial and lateral side of the tibia and into the medial side of the metatarsal bones. Radiographs were taken 15; 30 and 45 days after surgery. Bone fusion of the treated joints were observed at 30 days in all animals, and the implants were removed after 45 days. Loosening of the centrally threaded pins was observed in all groups, especially for those applied to the calcaneus. The configuration of the external fixator proposed here was found to be satisfactory in terms of bone union for all joints during the same period, irrespective of the weight of the animal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To biomechanically test the properties of three different Universal Micro External Fixator (UMEX™) configurations with regard to their use in very small animals (<5kg) and compare the UMEX system to the widely used IMEX External Skeletal Fixation (SK™) system in terms of stiffness, space needed for pin placement and weight. METHODS Three different UMEX configurations (type Ia, type Ib, and type II modified) and one SK configuration type Ia were used to stabilize Delrin plastic rods in a 1 cm fracture gap model. These constructs were tested in axial compression, craniocaudal bending, mediolateral bending, and torsion. Testing was conducted within the elastic range and mean stiffness in each mode was determined from the slope of the linear portion of the load-deformation curve. A Kruskal Wallis one-way analysis of variance on ranks test was utilized to assess differences between constructs (p <0.05). RESULTS The UMEX type II modified configuration was significantly stiffer than the other UMEX configurations and the SK type Ia, except in craniocaudal bending, where the SK type Ia configuration was stiffer than all UMEX constructs. The UMEX type Ia configuration was significantly the weakest of those frames. The UMEX constructs were lighter and smaller than the SK, thus facilitating closer pin placement. CONCLUSIONS Results supported previous reports concerning the superiority of more complex constructs regarding stiffness. The UMEX system appears to be a valid alternative for the treatment of long-bone fractures in very small animals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Percutaneous Kirschner wire fixation represents the classic treatment for displaced supracondylar humeral fractures in childhood. This type of treatment first requires satisfactory reduction of the fracture. Failure to achieve a satisfactory reduction or inadequate stabilization can result in instability of the fracture fragments, which can result in either an unsatisfactory cosmetic or functional outcome. In our experience, these problems can be overcome with the use of a small lateral external fixator. METHODS: Between 1999 and 2005, thirty-one of 170 Gartland type-III supracondylar humeral fractures were treated with a lateral external fixator. The outcome of treatment was analyzed with regard to limb alignment, elbow movement, cosmetic appearance, and patient satisfaction. RESULTS: In twenty-eight of the thirty-one patients, a satisfactory reduction was achieved with closed methods. All children except one had a normal or good range of movement. The cosmetic result was excellent in all cases. All of the children and their parents stated that they would choose this treatment again. CONCLUSIONS: The use of a small lateral external fixator seems to be a safe alternative for the treatment of displaced supracondylar fractures of the humerus when a closed reduction appears to be unattainable by means of manipulation alone or when sufficient stability is not achieved with standard methods of Kirschner wire fixation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE Precise adaptable fixation of a supracondylar humerus osteotomy with a radial/lateral external fixator to correct posttraumatic cubitus varus. INDICATIONS Acquired, posttraumatic cubitus varus as a result of a malhealed and unsatisfactorily treated supracondylar humerus fracture. Idiopathic, congenital cubitus varus (very seldom) if the child (independent of age and after complete healing) is cosmetically impaired; stability of the elbow is reduced due to malalignment (hyperextension); secondary problems and pain (e. g., irritation of the ulnar nerve) are expected or already exist; or there is an explicit wish of the child/parents (relative indication). CONTRAINDICATIONS In principle there are no contraindications provided that the indication criteria are filled. The common argument of age does not represent a contraindication in our opinion, since angular remodeling at the distal end of the humerus is practically nonexistent. SURGICAL TECHNIQUE Basically, the surgical technique of the radial external fixator is used as previously described for stabilization of complex supracondylar humeral fractures. With the patient in supine position, the arm is placed freely on an arm table. Using a 4-5 cm long skin incision along the radial, supracondylar, the extracapsular part of the distal humerus is prepared, whereby great caution regarding the radial nerve is advised. In contrast to the procedure used in radial external fixation for supracondylar humeral fracture treatment, two Schanz screws are always fixed in each fragment at a distance of 1.5-2 cm. The osteotomy must allow the fragment to freely move in all directions. The proximal and distal two Schanz screws are then connected with short 4 mm carbon or stainless steel rods. These two rods are connected with each other over another rod using the tub-to-tub technique. Now the preliminary correction according the clinical situation can be performed and the clamps are tightened. Anatomical axis and function are checked. If these are radiologically and clinically perfect, all clamps are definitively tightened; if the alignment or the function is not perfect, then further adjustments can be made. POSTOPERATIVE MANAGEMENT Due to the excellent stability, further immobilization not necessary. Immediate functional follow-up treatment performed according to pain. RESULTS Adequate healing is usually expected within 6 weeks. At this time the external fixator can be removed in the fracture clinic. Because the whole operation is performed in an extraarticular manner and the mobility of the elbow is not affected, deterioration of function has never been observed. Also regarding the cosmetic/anatomical situation, good results are expected because they were already achieved intraoperatively.