969 resultados para explosive precursors
Resumo:
Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 meters under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 seconds of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems.
Resumo:
Raman spectroscopy, when used in spatially offset mode, has become a potential tool for the identification of explosives and other hazardous substances concealed in opaque containers. The molecular fingerprinting capability of Raman spectroscopy makes it an attractive tool for the unambiguous identification of hazardous substances in the field. Additionally, minimal sample preparation is required compared with other techniques. We report a field portable time resolved Raman sensor for the detection of concealed chemical hazards in opaque containers. The new sensor uses a pulsed nanosecond laser source in conjunction with an intensified CCD detector. The new sensor employs a combination of time and space resolved Raman spectroscopy to enhance the detection capability. The new sensor can identify concealed hazards by a single measurement without any chemometric data treatments.
Resumo:
Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.
Resumo:
‘Explosive Revelations’ employs the device of the Hollywood-style explosion to expose the constructed and futile nature of the moving image. Pointless, impotent explosions bloom and fade, punctuating a non-existent narrative – they promise the spectacle of violence but destroy nothing and disappear without a trace. The video itself is sourced from a stock footage supplier that provides users with a selection of explosions that can be inserted into movies by masking out the background. However, the footage is not used as intended, leaving them instead as merely explosions erupting on top of a black background, fizzling out into non-existence. The work was included in the 2008 'Light in Winter' program at Federation Square, Melbourne, directed by Robyn Archer.
Resumo:
An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment. © 2011 American Chemical Society.
Resumo:
FT Raman spectroscopy has been used to characterise the composition of the oxalate precursor to YBCO superconductors. By comparison to spectra of barium, copper and yttrium oxalate it is concluded that the co-precipitate incorporates not only the individual oxalate species but also a species ascribed to a mixed oxalate system. Significantly, Raman spectroscopy demonstrated that the precursor was not amorphous as previously deduced from XRD studies. In contrast, it is hypothesised that the sample consists of very small crystalline particles.
Resumo:
Background: Xanthine oxidase (XO) is a complex molybdeno-flavoprotein occurring with high activity in the milk fat globule membrane (MFGM) in all mammalian milk and is involved in the final stage of degradation of purine nucleotides. It catalyzes the sequential oxidation of hypoxanthine to xanthine and uric acid, accompanied by production of hydrogen peroxide and superoxide anion. Human saliva has been extensively described for its composition of proteins, electrolytes, cortisol, melatonin and some metabolites such as amino acids, but little is known about nucleotide metabolites. Method: Saliva was collected with swabs from babies; at full-term 1-4 days, 6-weeks, 6-months and 12-months. Unstimulated fasting (morning) saliva samples were collected directly from 77 adults. Breast milk was collected from 24 new mothers. Saliva was extracted from swabs and ultra-filtered. Nucleotide metabolites were analyzed by RP-HPLC with UV-photodiode array and ESI-MS/MS. XO activity was measured as peroxide production from hypoxanthine. Bacterial inhibition over time was assessed using CFU/mL or OD. Results: Median concentrations (μmol/L) of salivary nucleobases and nucleosides for neonates/6-weeks/6-months/12-months/adult respectively were: uracil 5.3/0.8/1.4/0.7/0.8, hypoxanthine 27/7.0/1.1/0.8/2.0, xanthine 19/7.0/2.0/2.0/2.0, adenosine 12/7.0/0.9/0.8/0.1, inosine 11/5.0/0.3/0.4/0.2, guanosine 7.0/6.0/0.5/0.4/0.1, uridine 12/0.8/0.3/0.9/0.4. Deoxynucleosides and dihydropyrimidines concentrations were essentially negligible. XO activity (Vmax:mean ± SD) in breast milk was 8.9 ± 6.2 μmol/min/L and endogenous peroxide was 27 ± 12 μmol/L; mixing breast milk with neonate saliva generated ~40 μmol/L peroxide,which inhibited Staphylococcus aureus. Conclusions: Salivary metabolites, particularly xanthine/hypoxanthine, are high in neonates, transitioning to low adult levels between 6-weeks to 6-months (p < 0.001). Peroxide occurs in breast milk and is boosted during suckling as an antibacterial system.
Resumo:
The composition of a series of hydroxycarbonate precursors to copper/zinc oxide methanol synthesis catalysts prepared under conditions reported as optimum for catalytic activity has been studied. Techniques employed included thermogravimetry (TG), temperature-programmed decomposition (TPD), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman and FTIR spectroscopies. Evidence was obtained for various structural phases including hydrozincite, copper hydrozincite, aurichalcite, zincian malachite and malachite (the concentrations of which depended upon the exact Cu/Zn ratio used). Significantly, previously reported phases such as gerhardite and rosasite were not identified when catalysts were synthesized at optimum solution pH and temperature values, and after appropriate aging periods. Calcination of the hydroxycarbonate precursors resulted in the formation of catalysts containing an intimate mixture of copper and zinc oxides. Temperature-programmed reduction (TPR) revealed that a number of discrete copper oxide species were present in the catalyst, the precise concentrations of which were determined to be related to the structure of the catalyst precursor. Copper hydrozincite decomposed to give zinc oxide particles decorated by highly dispersed, small copper oxide species. Aurichalcite appeared to result ultimately in the most intimately mixed catalyst structure whereas zincian malachite decomposed to produce larger copper oxide and zinc oxide grains. The reason for the stabilization of small copper oxide and zinc oxide clusters by aurichalcite was investigated by using carefully selected calcination temperatures. It was concluded that the unique formation of an 'anion-modified' oxide resulting from the initial decomposition stage of aurichalcite was responsible for the 'binding' of copper species to zinc moieties.
Resumo:
Chemical vapor deposition (CVD) is widely utilized to synthesize graphene with controlled properties for many applications, especially when continuous films over large areas are required. Although hydrocarbons such as methane are quite efficient precursors for CVD at high temperature (∼1000 °C), finding less explosive and safer carbon sources is considered beneficial for the transition to large-scale production. In this work, we investigated the CVD growth of graphene using ethanol, which is a harmless and readily processable carbon feedstock that is expected to provide favorable kinetics. We tested a wide range of synthesis conditions (i.e., temperature, time, gas ratios), and on the basis of systematic analysis by Raman spectroscopy, we identified the optimal parameters for producing highly crystalline graphene with different numbers of layers. Our results demonstrate the importance of high temperature (1070 °C) for ethanol CVD and emphasize the significant effects that hydrogen and water vapor, coming from the thermal decomposition of ethanol, have on the crystal quality of the synthesized graphene.
Resumo:
A new method for the direct aryl iodination of isoindolines and isoindoline nitroxides which utilizes periodic acid and potassium iodide in sulfuric acid is presented. Di-iodo functionalized tetramethyl and tetraethyl isoindolines and a di-iodo tetramethyl isoindoline nitroxide were prepared in high yield (70-82%). The analogous mono-iodo species were afforded in modest yield (34-48%). Iodinated nitrones were also obtained from a tetraethyl isoindoline nitroxide.
Resumo:
Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials.
Resumo:
The conflicts in Iraq and Afghanistan have been epitomized by the insurgents’ use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.