968 resultados para excised roots
Resumo:
Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.
Resumo:
Understanding the factors controlling fine root respiration (FRR) at different temporal scales will help to improve our knowledge about the spatial and temporal variability of soil respiration (SR) and to improve future predictions of CO2 effluxes to the atmosphere. Here we present a comparative study of how FRR respond to variability in soil temperature and moisture in two widely spread species, Scots pines (Pinus sylvestris L.) and Holm-oaks (HO; Quercus ilex L.). Those two species show contrasting water use strategies during the extreme summer-drought conditions that characterize the Mediterranean climate. The study was carried out on a mixed Mediterranean forest where Scots pines affected by drought induced die-back are slowly being replaced by the more drought resistant HO. FRR was measured in spring and early fall 2013 in excised roots freshly removed from the soil and collected under HO and under Scots pines at three different health stages: dead (D), defoliated (DP) and non-defoliated (NDP). Variations in soil temperature, soil water content and daily mean assimilation per tree were also recorded to evaluate FRR sensibility to abiotic and biotic environmental variations. Our results show that values of FRR were substantially lower under HO (1.26 ± 0.16 microgram CO2 /groot·min) than under living pines (1.89 ± 0.19 microgram CO2 /groot·min) which disagrees with the similar rates of soil respiration previously observed under both canopies and suggest that FRR contribution to total SR varies under different tree species. The similarity of FRR rates under HO and DP furthermore confirms other previous studies suggesting a recent Holm-oak root colonization of the gaps under dead trees. A linear mixed effect model approach indicated that seasonal variations in FRR were best explained by soil temperature (p<0.05) while soil moisture was not exerting any direct control over FRR, despite the low soil moisture values during the summer sampling. Plant assimilation rates were positively related to FRR explaining part of the observed variability (p<0.01). However the positive relations of FRR with plant assimilation occurred mainly during spring, when both soil moisture and plant assimilation rates were higher. Our results finally suggest that plants might be able to maintain relatively high rates of FRR during the sub-optimal abiotic and biotic summer conditions probably thanks to their capacity to re-mobilize carbon reserves and their capacity to passively move water from moister layers to upper layers with lower water potentials (where the FR were collected) by hydraulic lift.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
High Al resistance in buckwheat (Fagopyrum esculentum Moench. cv Jianxi) has been suggested to be associated with both internal and external detoxification mechanisms. In this study the characteristics of the external detoxification mechanism, Al-induced secretion of oxalic acid, were investigated. Eleven days of P depletion failed to induce secretion of oxalic acid. Exposure to 50 μm LaCl3 also did not induce the secretion of oxalic acid, suggesting that this secretion is a specific response to Al stress. Secretion of oxalic acid was maintained for 8 h by a 3-h pulse treatment with 150 μm Al. A nondestructive method was developed to determine the site of the secretion along the root. Oxalic acid was found to be secreted in the region 0 to 10 mm from the root tip. Experiments using excised roots also showed that secretion was located on the root tip. Four kinds of anion-channel inhibitors showed different effects on Al-induced secretion of oxalic acid: 10 μm anthracene-9-carboxylic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate had no effect, niflumic acid stimulated the secretion 4-fold, and phenylglyoxal inhibited the secretion by 50%. Root elongation in buckwheat was not inhibited by 25 μm Al or 10 μm phenylglyoxal alone but was inhibited by 40% in the presence of Al and phenylglyoxal, confirming that secretion of oxalic acid is associated with Al resistance.
Resumo:
The objective of this work was to perform the screening of soybean genotypes as to their ability to respond to the induction of hairy roots by Agrobacterium rhizogenes‑mediated transformation. Four Brazilian soybean cultivars (BRSMG 68 Vencedora, BRS 137, Embrapa 48, and MG/BR 46 Conquista) and two North American ones adapted to Brazilian cropping conditions (Bragg and IAS‑5) were screened for their capacity to respond to A. rhizogenes in protocols for in vitro hairy root culture and ex vitro composite plant production. Four‑day‑old seedlings with uniform size were injected with A. rhizogenes harboring the plasmid p35S‑GFP. Seedlings expressing green fluorescent protein (GFP) in at least one hairy root were used to determine the transformation frequency. Using an axenic in vitro protocol, excised cotyledons from four‑day‑old seedlings were infected with A. rhizogenes harboring the pCAMBIA1301 plasmid, containing the gusA reporter gene. The transformation frequency and the number of days for hairy root emergence after bacterial infection (DAI) were evaluated. The transformation frequency and DAI varied according to the genotype. Cultivars MG/BR 46 Conquista and BRSMG 68 Vencedora are more susceptible to A. rhizogenes and can be recommended for transformation experiments.
Resumo:
The aim of this study was to evaluate the differential sensitivity of sugarcane genotypes to H2O2 in root medium. As a hypothesis, the drought tolerant genotype would be able to minimize the oxidative damage and maintain the water transport from roots to shoots, reducing the negative effects on photosynthesis. The sugarcane genotypes IACSP94-2094 (drought tolerant) and IACSP94-2101 (drought sensitive) were grown in a growth chamber and exposed to three levels of H2O2 in nutrient solution: control; 3mmolL(-1) and 80mmolL(-1). Leaf gas exchange, photochemical activity, root hydraulic conductance (Lr) and antioxidant metabolism in both roots and leaves were evaluated after 15min of treatment with H2O2. Although, root hydraulic conductance, stomatal aperture, apparent electron transport rate and instantaneous carboxylation efficiency have been reduced by H2O2 in both genotypes, IACSP94-2094 presented higher values of those variables as compared to IACSP94-2101. There was a significant genotypic variation in relation to the physiological responses of sugarcane to increasing H2O2 in root tissues, being root changes associated with modifications in plant shoots. IACSP94-2094 presented a root antioxidant system more effective against H2O2 in root medium, regardless H2O2 concentration. Under low H2O2 concentration, water transport and leaf gas exchange of IACSP94-2094 were less affected as compared to IACSP94-2101. Under high H2O2 concentration, the lower sensitivity of IACSP94-2094 was associated with increases in superoxide dismutase activity in roots and leaves and increases in catalase activity in roots. In conclusion, we propose a general model of sugarcane reaction to H2O2, linking root and shoot physiological responses.
Resumo:
This study evaluated the fracture resistance of weakened roots restored with glass fiber posts, composite resin cores and complete metal crowns. Thirty maxillary canines were randomly divided into 3 groups of 10 teeth each: teeth without weakened roots (control); teeth with partially weakened roots (PWR) and teeth with and largely weakened roots (LWR). The control group was restored with glass fiber posts and a composite resin core. Teeth in the PWR and LWR groups were flared internally to standardized dimensions in order to simulate root weakness. Thereafter, the roots were partially filled with composite resin and restored in the same way as in the control group. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis of the tooth until failure. Data were analyzed by one-way ANOVA and Dunnett's test for multiple comparisons (p=0.05). There were statistically significant difference differences (p<0.01) among the groups (control group = 566.73 N; PWR = 409.64 N; and LWR = 410.91 N), with significantly higher fracture strength for the control group. There was no statistically significant difference (p>0.05) between the weakened groups. The results of this study showed that thicker root dentin walls significantly increase the fracture resistance of endodontically treated teeth.
Resumo:
This in vivo study evaluated the dissociation quality of maxillary premolar roots combining variations of vertical and horizontal angulations by using X-ray holders (Rinn -XCP), and made a comparison between two types of intraoral radiography systems - conventional film (Kodak Insight, Rochester, USA) and digital radiography (Kodak RVG 6100, Kodak, Rochester, USA). The study sample was comprised of 20 patients with a total of 20 maxillary premolars that were radiographed, using the paralleling angle technique (GP), with a 20º variation of the horizontal angle (GM) and 25º variation of the horizontal angle combined with 15º vertical angle (GMV). Each image was independently analyzed by two experienced examiners. These examiners assigned a score to the diagnostic capability of root dissociation and the measurement of the distance between the apexes. Statistical data was derived using the Wilcoxon Signed Rank test, Friedman and T test. The means of the measured distances between buccal and lingual root apexes were greater for the GMV, which ranged from 2.3 mm to 3.3 mm. A statistically significant difference was found between GM and GMV when compared to GP with p < 0.01. An established best diagnostic dissociation roots image was found in the GMV. These results support the use of the anterior X-ray holders which offer a better combined deviation (GMV) to dissociate maxillary premolar roots in both radiography systems.
Resumo:
Previous studies pointed out that species richness and high density values within the Leguminosae in Brazilian forest fragments affected by fire could be due, at least partially, to the high incidence of root sprouting in this family. However, there are few Studies of the factors that induce root sprouting in woody plants after disturbance. We investigated the bud formation on root cuttings, and considered a man-made disturbance that isolates the root from the shoot apical dominance of three Leguminosae (Bauhinia forficata Link., Centrolobium tomentosum Guill. ex Benth, and Inga laurina (Sw.) Willd) and one Rutaceae (Esenbeckia febrifuga (St. Hit.) Juss. ex Mart.). All these species resprout frequently after fire. We also attempted to induce bud formation on root systems by removing the main trunk, girdling or sectioning the shallow lateral roots from forest tree species Esenbeckia febrifuga and Hymenaea courbaril L. We identified the origin of shoot primordia and their early development by fixing the samples in Karnovsky solution, dehydrating in ethyl alcohol series and embedding in plastic resin. Serial sections were cut on a rotary microtome and stained with toluidine blue O. Permanent slides were mounted in synthetic resin. We observed different modes of bud origin on root cuttings: close to the vascular cambium (C. tomentosum), from the callus (B. forficata and E febrifuga) and from the phloematic parenchyma proliferation (L laurina). Fragments of B. forficala root bark were also capable of forming reparative buds from healing phellogen formed in callus in the bark's inner side. In the attempt of bud induction on root systems, Hymenaea courbaril did not respond to any of the induction tests, probably because of plant age. However, Esenbeckia febrifuga roots formed suckers when the main trunk was removed or their roots were sectioned and isolated from the original plant. We experimentally demonstrated the ability of four tree species to resprout from roots after disturbance. Our results suggest that the release of apical dominance enables root resprouting in the studied species. Rev. Biol. Trop. 57 (3): 789-800. Epub 2009 September 30.
Resumo:
Given a continuous map f : K -> M from a 2-dimensional CW complex into a closed surface, the Nielsen root number N(f) and the minimal number of roots mu(f) of f satisfy N(f) <= mu(f). But, there is a number mu(C)(f) associated to each Nielsen root class of f, and an important problem is to know when mu(f) = mu(C)(f)N(f). In addition to investigate this problem, we determine a relationship between mu(f) and mu((f) over tilde), when (f) over tilde f is a lifting of f through a covering space, and we find a connection between this problems, with which we answer several questions related to them when the range of the maps is the projective plane.
Resumo:
1. Little is known about the role of deep roots in the nutrition of forest trees and their ability to provide a safety-net service taking up nutrients leached from the topsoil. 2. To address this issue, we studied the potential uptake of N, K and Ca by Eucalyptus grandis trees (6 years of age - 25 m mean height), in Brazil, as a function of soil depth, texture and water content. We injected NO(3)(-)- (15)N, Rb(+) (analogue of K(+)) and Sr(2+) (analogue of Ca(2+)) tracers simultaneously in a solution through plastic tubes at 10, 50, 150 and 300 cm in depth in a sandy and a clayey Ferralsol soil. A complete randomized design was set up with three replicates of paired trees per injection depth and soil type. Recently expanded leaves were sampled at various times after tracer injection in the summer, and the experiment was repeated in the winter. Soil water contents were continuously monitored at the different depths in the two soils. 3. Determination of foliar Rb and Sr concentrations and (15)N atom % made it possible to estimate the relative uptake potential (RUP) of tracer injections from the four soil depths and the specific RUP (SRUP), defined as RUP, per unit of fine root length density in the corresponding soil layer. 4. The highest tracer uptake rates were found in the topsoil, but contrasting RUP distributions were observed for the three tracers. Whilst the RUP was higher for NO(3)(-)- (15)N than for Rb(+) and Sr(2+) in the upper 50 cm of soil, the highest SRUP values for Sr(2+) and Rb(+) were found at a depth of 300 cm in the sandy soil, as well as in the clayey soil when gravitational solutions reached that depth. 5. Our results suggest that the fine roots of E. grandis trees exhibit contrasting potential uptake rates with depth depending on the nutrient. This functional specialization of roots might contribute to the high growth rates of E. grandis trees, efficiently providing the large amounts of nutrients required throughout the development of these fast-growing plantations.
Resumo:
Brazil is the largest sugarcane producer in the world, mainly due to the development of different management strategies. Recently, microbial-plant related studies revealed that bacterial isolates belonging to the genus Burkholderia are mainly associated with this plant and are responsible for a range of physiological activity. In this study, we properly evaluate the physiological activity and genetic diversity of endophytic and rhizospheric Burkholderia spp. isolates from sugarcane roots grown in the field in Brazil. In total, 39 isolates previously identified as Burkholderia spp. were firstly evaluated for the capability to fix nitrogen, produce siderophores, solubilise inorganic phosphates, produce indole-acetic acid and inhibit sugarcane phytopathogens in vitro. These results revealed that all isolates present at least two positive evaluated activities. Furthermore, a phylogenetic study was carried out using 16S rRNA and gyrB genes revealing that most of the isolates were affiliated with the Burkholderia cepacia complex. Hence, a clear separation given by endophytic or rhizospheric niche occupation was not observed. These results presented an overview about Burkholderia spp. isolates from sugarcane roots and supply information about the physiological activity and genetic diversity of this genus, given direction for further studies related to achieve more sustainable cultivation of sugarcane.
Resumo:
Background/Aims: It is a challenge to adapt traditional in vitro diffusion experiments to ocular tissue. Thus, the aim of this work was to present experimental evidence on the integrity of the porcine cornea, barrier function and maintenance of electrical properties for 6 h of experiment when the tissue is mounted on an inexpensive and easy-to-use in vitro model for ocular iontophoresis. Methods: A modified Franz diffusion cell containing two ports for the insertion of the electrodes and a receiving compartment that does not need gassing with carbogen was used in the studies. Corneal electron transmission microscopy images were obtained, and diffusion experiments with fluorescent markers were performed to examine the integrity of the barrier function. The preservation of the negatively charged corneal epithelium was verified by the determination of the electro-osmotic flow of a hydrophilic and non-ionized molecule. Results: The diffusion cell was able to maintain the temperature, homogenization, porcine epithelial corneal structure integrity, barrier function and electrical characteristics throughout the 6 h of permeation experiment, without requiring CO(2) gassing when the receiving chamber was filled with 25 m M of HEPES buffer solution. Conclusion: The system described here is inexpensive, easy to handle and reliable as an in vitro model for iontophoretic ocular delivery studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30-75 nS. The dose response curve for calcium exhibited an EC50 of about 26 mu M. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between -80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a P-Na/P-Cl of 0.034. The halide permeability sequence was P-Cl > P-F > P-I > P-Br indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN-, acetate(-), and gluconate(-), with the permeability sequence P-Cl > P-SCN > gluconaie. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 Angstrom.
Resumo:
Soluble organic nitrogen, including protein and amino acids, was found to be a ubiquitous form of soil N in diverse Australian environments. Fine roots of species representative of these environments were found to be active in the metabolism of glycine. The ability to incorporate [N-15]glycine was widespread among plant species from subantarctic to tropical communities. In species from subantarctic herbfield, subtropical coral cay, subtropical rainforest and wet heathland, [N-15]glycine incorporation ranged from 26 to 45% of (NH4+)-N-15 incorporation and was 2- to 3-fold greater than (NO3-)-N-15 incorporation. Most semiarid mulga and tropical savanna woodland species incorporated [N-15]glycine and (NO3-)-N-15 in similar amounts, 18-26% of (NH4+)-N-15 incorporation. We conclude that the potential to utilise amino acids as N sources is of widespread occurrence in plant communities and is not restricted to those from low temperature regimes or where N mineralisation is limited. Seedlings of Hakea (Proteaceae) were shown to metabolise glycine, with a rapid transfer of N-15 from glycine to serine and other amino compounds. The ability to take up and metabolise glycine was unaffected by the presence of equimolar concentrations of NO3- and NH4+. Isonicotinic acid hydrazide (INH) did not inhibit the transfer of N-15-label from glycine to serine indicating that serine hydroxymethyltransferase was not active in glycine catabolism. In contrast aminooxyacetate (AOA) strongly inhibited transfer of N-15 from glycine to serine and labelling of other amino compounds, suggesting that glycine is metabolised in roots and cluster roots of Hakea via an aminotransferase.