990 resultados para exact
Resumo:
The flavonoids present in sugarcane (Saccharum officinarum) extracts were analyzed by liquid chromatography - mass spectrometry (LC-MS), and a study of the fragmentation patterns of selected flavonoids was conducted using orthogonal acceleration time-of-flight electrospray ionization mass spectrometry (ESI-oa-ToF MS). Seven C- and O-glycosylflavones were identified in the extracts, namely, schaftoside, isoschaftoside, luteolin-8-C-(rhamnosylglucoside), vitexin, orientin, tricin-7-O-neohesperidoside and tricin-7-O-glucoside. Of these, five were identified in the absence of direct comparison with their respective standards. The described method also permitted the differentiation of the 6-C and 8-C isomeric flavones, schaftoside and isoschaftoside. The combination of fragmentation data and exact mass measurement showed to be complimentary to the HPLC-UV-MS techniques previously utilized for isomers discrimination in sugarcane studies.
Resumo:
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
We obtain the exact nonequilibrium work generating function (NEWGF) for a small system consisting of a massive Brownian particle connected to internal and external springs. The external work is provided to the system for a finite-time interval. The Jarzynski equality, obtained in this case directly from the NEWGF, is shown to be valid for the present model, in an exact way regardless of the rate of external work.
Resumo:
This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.
Resumo:
An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Following the approach developed for rods in Part 1 of this paper (Pimenta et al. in Comput. Mech. 42:715-732, 2008), this work presents a fully conserving algorithm for the integration of the equations of motion in nonlinear shell dynamics. We begin with a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, allowing for an extremely simple update of the rotational variables within the scheme. The weak form is constructed via non-orthogonal projection, the time-collocation of which ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that general hyperelastic materials (and not only materials with quadratic potentials) are permitted in a totally consistent way. Spatial discretization is performed using the finite element method and the robust performance of the scheme is demonstrated by means of numerical examples.
Resumo:
A fully conserving algorithm is developed in this paper for the integration of the equations of motion in nonlinear rod dynamics. The starting point is a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, which results in an extremely simple update of the rotational variables. The weak form is constructed with a non-orthogonal projection corresponding to the application of the virtual power theorem. Together with an appropriate time-collocation, it ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that nonlinear hyperelastic materials (and not only materials with quadratic potentials) are permitted without any prejudice on the conservation properties. Spatial discretization is performed via the finite element method and the performance of the scheme is assessed by means of several numerical simulations.
Resumo:
This paper addresses the development of several alternative novel hybrid/multi-field variational formulations of the geometrically exact three-dimensional elastostatic beam boundary-value problem. In the framework of the complementary energy-based formulations, a Legendre transformation is used to introduce the complementary energy density in the variational statements as a function of stresses only. The corresponding variational principles are shown to feature stationarity within the framework of the boundary-value problem. Both weak and linearized weak forms of the principles are presented. The main features of the principles are highlighted, giving special emphasis to their relationships from both theoretical and computational standpoints. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler-Bernoulli beams, are obtained by solving a transcendental. nonlinear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is the Wittrick-Williams algorithm, developed in the early seventies. By formulating a new type of eigenvalue problem, which preserves the internal degrees-of-freedom for all members in the model, the present study offers an alternative to the use of this algorithm. The new proposed eigenvalue problem presents no poles, so the roots of the problem can be found by any suitable iterative numerical method. By avoiding a standard formulation for the DSM, the local mode shapes are directly calculated and any extension to the beam theory can be easily incorporated. It is shown that the method here adopted leads to exact solutions, as confirmed by various examples. Extensions of the formulation are also given, where rotary inertia, end release, skewed edges and rigid offsets are all included. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A method based on a specific power-law relationship between the hydraulic head and the Boltzmann variable was recently presented. We generalized this relationship to a range of powers and extended the solution to include the saturated zone. As a result, the new solution satisfies the Bruce and Klute equation exactly.
Resumo:
Random walks can undergo transitions from normal diffusion to anomalous diffusion as some relevant parameter varies, for instance the L,vy index in L,vy flights. Here we derive the Fokker-Planck equation for a two-parameter family of non-Markovian random walks with amnestically induced persistence. We investigate two distinct transitions: one order parameter quantifies log-periodicity and discrete scale invariance in the first moment of the propagator, whereas the second order parameter, known as the Hurst exponent, describes the growth of the second moment. We report numerical and analytical results for six critical exponents, which together completely characterize the properties of the transitions. We find that the critical exponents related to the diffusion-superdiffusion transition are identical in the positive feedback and negative feedback branches of the critical line, even though the former leads to classical superdiffusion whereas the latter gives rise to log-periodic superdiffusion.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
The A(n-1)((1)) trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.
Resumo:
Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.