80 resultados para equalizer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) channels characterized by severe delay spreads. The proposed equalizer is based on reactive tabu search (RTS), which is a heuristic originally designed to obtain approximate solutions to combinatorial optimization problems. The proposed RTS equalizer is shown to perform increasingly better for increasing number of multipath components (MPC), and achieve near maximum likelihood (ML) performance for large number of MPCs at a much less complexity than that of the ML detector. The proposed RTS equalizer is shown to perform close to within 0.4 dB of single-input multiple-output AWGN performance at 10(-3) uncoded BER on a severely delay-spread UWB MIMO channel with 48 equal-energy MPCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a time varying wireless fading channel, equalized by an LMS linear equalizer in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the optimal Wiener equalizer. Initially we study a fixed channel.For a fixed channel, we obtain the existence of DD attractors near the Wiener filter at high SNRs using an ODE (Ordinary Differential Equation) approximating the DD-LMS-LE. We also show, via examples, that the DD attractors may not be close to the Wiener filters at low SNRs. Next we study a time varying fading channel modeled by an Auto-regressive (AR) process of order 2. The DD-LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs. We show via examples that the LMS equalizer ODE show tracks the ODE corresponding to the instantaneous Wiener filter when the SNR is high. This may not happen at low SNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a time varying wireless fading channel, equalized by an LMS Decision Feedback equalizer (DFE). We study how well this equalizer tracks the optimal MMSEDFE (Wiener) equalizer. We model the channel by an Autoregressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, we show via some examples that the LMS equalizer moves close to the instantaneous Wiener filter after initial transience. We also compare the LMS equalizer with the instantaneous optimal DFE (the commonly used Wiener filter) designed assuming perfect previous decisions and computed using perfect channel estimate (we will call it as IDFE). We show that the LMS equalizer outperforms the IDFE almost all the time after initial transience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study an LMS-DFE. We use the ODE framework to show that the LMS-DFE attractors are close to the true DFE Wiener filter (designed considering the decision errors) at high SNR. Therefore, via LMS one can obtain a computationally efficient way to obtain the true DFE Wiener filter under high SNR. We also provide examples to show that the DFE filter so obtained can significantly outperform the usual DFE Wiener filter (designed assuming perfect decisions) at all practical SNRs. In fact, the performance improvement is very significant even at high SNRs (up to 50%), where the popular Wiener filter designed with perfect decisions, is believed to be closer to the optimal one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the problem of designing minimum mean squared error (MMSE) filterbank precoder and equalizer for multiple input multiple output (MIMO) frequency selective channels. We derive the conditions to be satisfied by the optimal precoder-equalizer pair, and provide an iterative algorithm for solving them. The optimal design is very general, in that it is not constrained by channel dimensions, channel order, channel rank, or the input constellation. We also discuss some pertinent difierences between the filterbank approach and the space-time approach to the design of optimal precoder and equalizer. Simulation results demonstrate that the proposed design performs better than the space-time systems while supporting a higher data rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the inherent feedback in a decision feedback equalizer (DFE) the minimum mean square error (MMSE) or Wiener solution is not known exactly. The main difficulty in such analysis is due to the propagation of the decision errors, which occur because of the feedback. Thus in literature, these errors are neglected while designing and/or analyzing the DFEs. Then a closed form expression is obtained for Wiener solution and we refer this as ideal DFE (IDFE). DFE has also been designed using an iterative and computationally efficient alternative called least mean square (LMS) algorithm. However, again due to the feedback involved, the analysis of an LMS-DFE is not known so far. In this paper we theoretically analyze a DFE taking into account the decision errors. We study its performance at steady state. We then study an LMS-DFE and show the proximity of LMS-DFE attractors to that of the optimal DFE Wiener filter (obtained after considering the decision errors) at high signal to noise ratios (SNR). Further, via simulations we demonstrate that, even at moderate SNRs, an LMS-DFE is close to the MSE optimal DFE. Finally, we compare the LMS DFE attractors with IDFE via simulations. We show that an LMS equalizer outperforms the IDFE. In fact, the performance improvement is very significant even at high SNRs (up to 33%), where an IDFE is believed to be closer to the optimal one. Towards the end, we briefly discuss the tracking properties of the LMS-DFE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a decision feedback equalizer (DFE), the structural parameters, including the decision delay, the feedforward filter (FFF), and feedback filter (FBF) lengths, must be carefully chosen, as they greatly influence the performance. Although the FBF length can be set as the channel memory, there is no closed-form expression for the FFF length and decision delay. In this letter, first we analytically show that the two-dimensional search for the optimum FFF length and decision delay can be simplified to a one-dimensional search and then describe a new adaptive DFE where the optimum structural parameters can he self-adapted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative fast processing speed requirements in Wireless Personal Area Network (WPAN) consumer based products are often in conflict with their low power and cost requirements. In order to solve this conflict the efficiency and cost effectiveness of these products and the underlying functional modules become paramount. This paper presents a low-cost, simple, yet high performance solution for the receiver Channel Estimator and Equalizer for the Mutiband OFDM (MB-OFDM) system, particularly directed to the WiMedia Consortium Physical Later (ECMA-368) consumer implementation for Wireless-USB and Fast Bluetooth. In this paper, the receiver fixed point performance is measured and the results indicate excellent performance compared to the current literature(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the enablers for new consumer electronics based products to be accepted in to the market is the availability of inexpensive, flexible and multi-standard chipsets and services. DVB-T, the principal standard for terrestrial broadcast of digital video in Europe, has been extremely successful in leading to governments reconsidering their targets for analogue television broadcast switch-off. To enable one further small step in creating increasingly cost effective chipsets, the ODFM deterministic equalizer has been presented before with its application to DVB-T. This paper discusses the test set-up of a DVB-T compliant baseband simulation that includes the deterministic equalizer and DVB-T standard propagation channels. This is then followed by a presentation of the found inner and outer Bit Error Rate (BER) results using various modulation levels, coding rates and propagation channels in order to ascertain the actual performance of the deterministic equalizer(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in the UK concerning the reception of Digital Terrestrial Television (DTT) have indicated that, as it currently stands, DVB-T receivers may not be sufficient to maintain adequate quality of digital picture information to the consumer. There are many possible reasons why such large errors are being introduced into the system preventing reception failure. It has been suggested that one possibility is that the assumptions concerning the immunity to multipath that Coded Orthogonal Frequency Division Multiplex (COFDM) is expected to have, may not be entirely accurate. Previous research has shown that multipath can indeed have an impact on a DVB-T receiver performance. In the UK, proposals have been made to change the modulation from 64-QAM to 16-QAM to improve the immunity to multipath, but this paper demonstrates that the 16-QAM performance may again not be sufficient. To this end, this paper presents a deterministic approach to equalization such that a 64-QAM receiver with the simple equalizer presented in this paper has the same order of MPEG-2 BER performance as that to a 16-QAM receiver without equalization. Thus, alleviating the requirement in the broadcasters to migrate from 64-QAM to 16-QAM Of course, by adding the equalizer to a 16-QAM receiver then the BER is also further improved and thus creating one more step to satisfying the consumers(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.