Full-field feed-forward equalizer with adaptive system optimization
Data(s) |
01/10/2010
|
---|---|
Resumo |
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line. |
Formato |
application/pdf |
Identificador |
http://eprints.aston.ac.uk/18074/1/Full_field_electronic_dispersion_compensation.pdf Zhao, Jian A.; Bessler, Vivian M. and Ellis, Andrew (2010). Full-field feed-forward equalizer with adaptive system optimization. Optical fiber technology, 16 (5), pp. 323-328. |
Relação |
http://eprints.aston.ac.uk/18074/ |
Tipo |
Article PeerReviewed |