470 resultados para epicanthic folds
Resumo:
Minor structural alterations of the vocal fold cover are frequent causes of voice abnormalities. They may be difficult to diagnose, and are expressed in different manners. Cases of intracordal cysts, sulcus vocalis, mucosal bridge, and laryngeal micro-diaphragm form the group of minor structural alterations of the vocal fold cover investigated in the present study. The etiopathogenesis and epidemiology of these alterations are poorly known. To evaluate the existence and anatomical characterization of minor structural alterations in the vocal folds of newborns. 56 larynxes excised from neonates of both genders were studied. They were examined fresh, or defrosted after conservation via freezing, under a microscope at magnifications of 25× and 40×. The vocal folds were inspected and palpated by two examiners, with the aim of finding minor structural alterations similar to those described classically, and other undetermined minor structural alterations. Larynges presenting abnormalities were submitted to histological examination. Six cases of abnormalities were found in different larynges: one (1.79%) compatible with a sulcus vocalis and five (8.93%) compatible with a laryngeal micro-diaphragm. No cases of cysts or mucosal bridges were found. The observed abnormalities had characteristics similar to those described in other age groups. Abnormalities similar to sulcus vocalis or micro-diaphragm may be present at birth.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
Objectives: Perifascial areolar tissue (PAT) consists of loose areolar tissue with viscoelastic properties that are similar to those found in tissues in the superficial layer of the vocal fold. The aim of this study was to quantify the inflammatory process and the collagen content of the graft, as well as that of the host tissue, after placement of a strip of PAT into the rabbit vocal fold. Methods: Surgeries were performed on 30 rabbits. The grafts were implanted in pockets that were surgically created in the right vocal fold. The left vocal fold (control group) was subjected only to surgical manipulation. The animals were divided into 3 groups for evaluations at 15 days, 3 months, and 6 months, and their larynx tissues were subsequently reviewed by histology. Results: The grafts were characterized by disorganized and thick collagen bundles and were identified in all study groups. The collagen density stayed constant over time. There was an acute inflammatory response induced by the graft at 15 clays that did not exist in the specimens taken at 3 and 6 months. Deposition of collagen fibers in the lamina propria was observed starting at 15 days after the operation and was more intense in the experimental vocal fold than in the control vocal fold. Conclusions: Our findings indicated that PAT has a low tendency for promoting an inflammatory response. However, there was a loss of the original architecture of the graft tissue and a greater deposition of collagen in the implanted vocal folds than in the control group.
Resumo:
Objectives: To analyze the presence and distribution of collagen fibers and versican in human vocal fold lamina propria of fetal larynges. Study Design: Cross sectional analysis of cadaveric vocal folds of human fetuses. Methods: Seven fetal larynges obtained from 28- to 36-week-old fetuses were analyzed with the Picrosirius-polarization method, immunohistochemistry, and image analysis. Results: Collagen fibers within the lamina propria exhibited a monolaminar distribution pattern and spatial arrangement in ""wicker basket."" Versican distribution was larger in the superficial and intermediate layers when compared to the deep layer. Conclusion: Our findings suggest that collagen and versican distribution and arrangement within the lamina propria in the developing fetus are important for vocalization at birth.
Resumo:
Objective: To analyze and compare the incidence and visual characteristics of blood vessels on the superior surface of vocal folds with polyps, nodules, and minimal structural alterations (ie, sulci, cysts, and mucosal bridges). Design: Cross-sectional study. Setting: Academic research. Patients: A total of 280 videolaryngoscopic images were randomly selected and classified into the following 4 groups of 70 patients each: the vocal nodule (VN) group, the polyp group, the minimal structural alterations (MSA) group, and the control group. Main Outcome Measures: Laryngoscopic images were assessed for visible blood vessels and for the orientation and characteristics of the vessels. Isolated ectasias with clear boundaries were excluded. Results: The highest incidence of visible vessels was observed in the MSA group (91.4%), followed by the polyp (77.1%), VN (44.7%), and control (31.4%) groups. Longitudinal and transverse vessels were found more frequently in the MSA (74.3% and 37.1%) and polyp (65.7% and 22.9%) groups than in the VN (34.3% and 12.9%) and control (25.7% and 5.7%) groups. Tangled vessels were found only in the MSA group (8.6%). Abrupt changes in the caliber of the vessels and sinuous vessels were ob served only in the polyp (21.4% and 5.7%) and MSA (61.4% and 27.1%) groups. Conclusions: The main differences in the incidence and characteristics of visible blood vessels occurred between 2 pairs of groups: MSA-polyp and VN-control. The incidence was significantly higher in the MSA group than in the polyp group, and the incidence in both the MSA group and the polyp group was also significantly higher than that in the VN and control groups. The greatest variations were found in the MSA group, including the presence of tangled blood vessels (which was observed only in this group).
Resumo:
A number of new and newly improved methods for predicting protein structure developed by the Jones–University College London group were used to make predictions for the CASP6 experiment. Structures were predicted with a combination of fold recognition methods (mGenTHREADER, nFOLD, and THREADER) and a substantially enhanced version of FRAGFOLD, our fragment assembly method. Attempts at automatic domain parsing were made using DomPred and DomSSEA, which are based on a secondary structure parsing algorithm and additionally for DomPred, a simple local sequence alignment scoring function. Disorder prediction was carried out using a new SVM-based version of DISOPRED. Attempts were also made at domain docking and “microdomain” folding in order to build complete chain models for some targets.
Resumo:
The results of applying a fragment-based protein tertiary structure prediction method to the prediction of 14 CASP5 target domains are described. The method is based on the assembly of supersecondary structural fragments taken from highly resolved protein structures using a simulated annealing algorithm. A number of good predictions for proteins with novel folds were produced, although not always as the first model. For two fold recognition targets, FRAGFOLD produced the most accurate model in both cases, despite the fact that the predictions were not based on a template structure. Although clear progress has been made in improving FRAGFOLD since CASP4, the ranking of final models still seems to be the main problem that needs to be addressed before the next CASP experiment
Resumo:
Objectives: Studies of the viscoelastic properties of the vocal folds are normally performed with rheometers that use parallel assigned a fixed value. In tissues subject to variation of thickness plates whose interplate space is usually at between samples, fixed gaps could result in different compressions, compromising the comparison among them. We performed,in experimental study to determine whether different compressions call lead to different results in measurements of dynamic viscosity (DV) of vocal fold samples. Methods: We Measured the DV of vocal fold samples of 10 larynges of cadavers under 3 different compression levels, corresponding to 0.2, 0.5, and 10 N on an 8-mm-diameter parallel-plate rheometer. Results: The DV directly varied with compression. We observed statistically significant differences between the results of 0.2 and 10 N (p = 0.0396) and 0.5 and 10 N (p = 0.0442). Conclusions: The study demonstrated that the level of compression influences the DV measure and Suggests that a defined compression level should be used in rheometric studies of biological tissues.
Resumo:
There is a remarkable connection between the number of quantum states of conformal theories and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with (supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors in the state density expansion and in the coefficient of the logarithmic correction to the entropy.
Resumo:
In this work we show that the smooth classification of divergent diagrams of folds (f(1),..., f(s)) : (R-n, 0) -> (R-n x(...)xR(n), 0) can be reduced to the classification of the s-tuples (p(1)., W) of associated involutions. We apply the result to obtain normal forms when s <= n and {p(1),...,p(s)} is a transversal set of linear involutions. A complete description is given when s = 2 and n >= 2. We also present a brief discussion on applications of our results to the study of discontinuous vector fields and discrete reversible dynamical systems.
Resumo:
In this work a computational method is presented to simulate the movements of vocal folds in three dimensions. The proposed model consists of a mesh free structure where each vertex is connected its neighbor through a group spring-damper. Forced oscillations were studied by time varying surface forces. The preliminary results using this model are similar with the literature and with the experimental stroboscopic observations of larynx. © 2006 IEEE.
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.