943 resultados para engineering, electrical


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vols. 2 and 4 include supplements "The Manchester electrical exhibition of 1908" and "The electrical exhibition of 1911", respectively, each issued in 5 parts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

he induced current and voltage on the skin of an airborne vehicle due to the coupling of external electromagnetic field could be altered in the presence of ionized exhaust plume. So in the present work, a theoretical analysis is done to estimate the electrical parameters such as electrical conductivity and permittivity and their distribution in the axial and radial directions of the exhaust plume of an airborne vehicle. The electrical conductivity depends on the distribution of the major ionic species produced from the propellant combustion. In addition it also depends on temperature and pressure distribution of the exhaust plume as well as the generated shock wave. The chemically reactive rocket exhaust flow is modeled in two stages. The first part is simulated from the combustion chamber to the throat of the supersonic nozzle by using NASA Chemical Equilibrium with Application (CEA) package and the second part is simulated from the nozzle throat to the downstream of the plume by using a commercial Computational Fluid Dynamics (CFD) solver. The contour plots of the exhaust parameters are presented. Eight barrel shocks which influence the distribution of the vehicle exhaust parameters are obtained in this simulation. The computed peak value of the electrical conductivity of the plume is 0.123 S/m and the relative permittivity varies from 0.89 to 0.99. The attenuation of the microwave when it is passing through the conducting exhaust plume has also been presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports the electrical discharge resistant characteristics of epoxy nanocomposite systems with SiO2 and Al2O3 nano-fillers. A comparative study is performed between unfilled epoxy systems, nanoparticle filled epoxy systems and a bimodal system containing both micrometer and nanometer sized fillers of the same material. The samples are exposed to surface discharges and the levels of surface degradation are analyzed through SEM and surface roughness measurements. Significant variations were observed in the electrical discharge resistant characteristics between the different composite systems and it is seen that the introduction of nano-fillers to epoxy is advantageous in improving the electrical discharge resistance of epoxy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Treeing in polyethylene based nanocomposite samples as well as unfilled polyethylene samples were studied using 50Hz ac voltage. The tree inception voltage was observed for different types of samples. The tree initiation time as well as the tree growth patterns at a fixed ac voltage have also been studied. The results show that there is an improvement in tree inception voltage with nano filler loading in polyethylene. Different tree growth patterns for both the unfilled polyethylene and the polyethylene nanocomposites have been observed. A slower tree growth was observed in polyethylene nanocomposites. The partial discharge characteristics of unfilled and nano filled polyethylene samples during the electrical tree growth period was also studied. Decrease in PD magnitude as well as in the number of pd pulses with electrical tree growth duration in polyethylene nanocomposites has also been observed. The possible reasons for the improvement in electrical tree growth and PD resistance with the addition of nano fillers are discussed.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.