921 resultados para energy system
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
The biomass resources, existing utilization levels and the efficiency of its use have been analyzed for a South Indian village. A biomass based energy efficient strategy has been devised to meet all the energy needs of the village, including substitution of fuels such as electricity and kerosene used in specific activities. Results indicate that the potential as well as the technologies exist for such substitutions. The proposed strategy will lead to an increase in the efficiency of energy use, reduce human drudgery and make villages more self reliant.
Resumo:
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.
Resumo:
In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
Resumo:
With the integration of combined heat and power (CHP) units, air-conditioners and gas boilers, power, gas, and heat systems are becoming tightly linked to each other in the integrated community energy system (ICES). Interactions among the three systems are not well captured by traditional methods. To address this issue, a hybrid power-gas-heat flow calculation method was developed in this paper. In the proposed method, an energy hub model was presented to describe interactions among the three systems incorporating various CHP operating modes. In addition, three operating modes were proposed for the ICES including fully decoupled, partially coupled, and fully coupled. Numerical results indicated that the proposed algorithm can be used in the steady-state analysis of the ICES and reflect interactions among various energy systems.
Resumo:
With the increasing utilization of combined heat and power plants (CHP), electrical, gas, and thermal systems are becoming tightly integrated in the urban energy system (UES). However, the three systems are usually planned and operated separately, ignoring their interactions and coordination. To address this issue, the coupling point of different systems in the UES is described by the energy hub model. With this model, an integrated load curtailment method is proposed for the UES. Then a Monte Carlo simulation based approach is developed to assess the reliability of coordinated energy supply systems. Based on this approach, a reliability-optimal energy hub planning method is proposed to accommodate higher renewable energy penetration. Numerical studies indicate that the proposed approach is able to quantify the UES reliability with different structures. Also, optimal energy hub planning scheme can be determined to ensure the reliability of the UES with high renewable penetration.
Resumo:
Integrated energy system and Energy Internet are two hot topics in the field of energy. In this paper, these two concepts and their focuses are summarized and analyzed. Typical research in the areas of integrated energy system and Energy Internet is reviewed. The research concerns and technologies of these two concepts are then outlined respectively. The differences and similarities of these two concepts and their future development are discussed.
Resumo:
The present study cross-sectionally investigated the influence of training status, route difficulty and upper body aerobic and anaerobic performance of climbers on the energetics of indoor rock climbing. Six elite climbers (EC) and seven recreational climbers ( RC) were submitted to the following laboratory tests: ( a) anthropometry, (b) upper body aerobic power, and ( c) upper body Wingate test. on another occasion, EC subjects climbed an easy, a moderate, and a difficult route, whereas RC subjects climbed only the easy route. The fractions of the aerobic (WAER), anaerobic alactic (W-PCR) and anaerobic lactic (W-[La(])-) systems were calculated based on oxygen uptake, the fast component of excess post-exercise oxygen uptake, and changes in net blood lactate, respectively. on the easy route, the metabolic cost was significantly lower in EC [ 40.3 ( 6.5) kJ] than in RC [60.1 ( 8.8) kJ] ( P < 0.05). The respective contributions of the WAER, WPCR, and W-[La(])- systems in EC were: easy route = 41.5 (8.1), 41.1 (11.4) and 17.4% (5.4), moderate route = 45.8 (8.4), 34.6 (7.1) and 21.9% (6.3), and difficult route = 41.9 (7.4), 35.8 (6.7) and 22.3% (7.2). The contributions of the WAER, WPCR, and W-[La(])- systems in RC subjects climbing an easy route were 39.7 (5.0), 34.0 (5.8), and 26.3% (3.8), respectively. These results indicate that the main energy systems required during indoor rock climbing are the aerobic and anaerobic alactic systems. In addition, climbing economy seems to be more important for the performance of these athletes than improved energy metabolism.
Resumo:
A biophysical understanding of the MSW-to-energy facility located at the Sao Joao landfill in São Paulo is performed using emergy synthesis. The implementation of a plan for environmental compensation in fulfillment of State's requirements was also assessed. Emergy based indices are calculated to assess the environmental pressure and sustainability status of the biogas project. The study was conducted by combining the study of emergy indicators and the net emergy yield ratio to determine long-term sustainability and measure global environmental stress. The Emergy investment to the use of biogas is relatively low and profitable. The implementation of the project for environmental compensation does not change the Emergy investment significantly, but the energy recovery is high. The conclusions justify the effort invested in developing MSW-to-energy plants and are applicable for policy makers in a highly sensitive sector to achieve sustainability goals - recovery of energy.