923 resultados para energy landscape theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the nature of biomolecular binding. We found that in general there exists several thermodynamic phases: a native binding phase, a non-native phase, and a glass or local trapping phase. The quantitative optimal criterion for the binding specificity is found to be the maximization of the ratio of the binding transition temperature versus the trapping transition temperature, or equivalently the ratio of the energy gap of binding between the native state and the average non-native states versus the dispersion or variance of the non-native states. This leads to a funneled binding energy landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We found that the first passage-time (FPT) distribution undergoes a dynamic transition at a temperature below which the FPT distribution develops a power-law tail, a signature of the intermittent nonexponential kinetic phenomena for the folding dynamics. Possible applications to single-molecule dynamics experiments are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new approach to study the diffusion dynamics on biomolecular interface binding energy landscape. The resulting mean first passage time (MFPT) has 'U'curve dependence on the temperature. It is shown that the large specificity ratio of gap to roughness of the underlying binding energy landscape not only guarantees the thermodynamic stability and the specificity [P.A. Rejto, G.M. Verkhivker, in: Proc. Natl. Acad. Sci. 93 (1996) 8945; C.J. Tsai, S. Kumar, B. Ma, R. Nussinov, Protein Sci. 8 (1999) 1181; G.A. Papoian, P.G. Wolynes, Biopolymers 68 (2003) 333; J. Wang, G.M. Verkhivker, Phys. Rev. Lett. 90 (2003) 198101] but also the kinetic accessibility. The complex kinetics and the associated fluctuations reflecting the structures of the binding energy landscape emerge upon temperature changes. The theory suggests a way of connecting the models/simulations with single molecule experiments by analysing the kinetic trajectories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microkinetic model is developed in the free energy landscape based on density functional theory (DFT) to quantitatively investigate the reaction mechanism of chemoselective partial hydrogenation of crotonaldehyde to crotyl alcohol over Pt(1 1 1) at the temperature of 353 K. Three different methods (mobile, immobile and collision theory models) were carried out to obtain free energy barrier of adsorption/desorption processes. The results from mobile and collision theory models are similar. The calculated TOFs from both models are close to the experiment value. However, for the immobile model, in which the free energy barrier of desorption approaches the energy barrier, the calculated TOF is 2 orders of magnitude lower than the other models. The difficulty of adsorption/ desorption may be overestimated in the immobile model. In addition, detailed analyses show that for the surface hydrogenation elementary steps, the entropy and internal energy effects are small under the reaction condition, while the zero-point-energy (ZPE) correction is significant, especially for the multi-step hydrogenation reaction. The total energy with the ZPE correction approaches to the full free energy calculation for the surface reaction under the reaction condition. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite intensive research during the last decades, thetheoreticalunderstanding of supercooled liquids and the glasstransition is stillfar from being complete. Besides analytical investigations,theso-called energy-landscape approach has turned out to beveryfruitful. In the literature, many numerical studies havedemonstratedthat, at sufficiently low temperatures, all thermodynamicquantities can be predicted with the help of the propertiesof localminima in the potential-energy-landscape (PEL). The main purpose of this thesis is to strive for anunderstanding ofdynamics in terms of the potential energy landscape. Incontrast to the study of static quantities, this requirestheknowledge of barriers separating the minima.Up to now, it has been the general viewpoint that thermallyactivatedprocesses ('hopping') determine the dynamics only belowTc(the critical temperature of mode-coupling theory), in thesense that relaxation rates follow from local energybarriers.As we show here, this viewpoint should be revisedsince the temperature dependence of dynamics is governed byhoppingprocesses already below 1.5Tc.At the example of a binary mixture of Lennard-Jonesparticles (BMLJ),we establish a quantitative link from the diffusioncoefficient,D(T), to the PEL topology. This is achieved in three steps:First, we show that it is essential to consider wholesuperstructuresof many PEL minima, called metabasins, rather than singleminima. Thisis a consequence of strong correlations within groups of PELminima.Second, we show that D(T) is inversely proportional to theaverageresidence time in these metabasins. Third, the temperaturedependenceof the residence times is related to the depths of themetabasins, asgiven by the surrounding energy barriers. We further discuss that the study of small (but not toosmall) systemsis essential, in that one deals with a less complex energylandscapethan in large systems. In a detailed analysis of differentsystemsizes, we show that the small BMLJ system consideredthroughout thethesis is free of major finite-size-related artifacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A value-shift began to influence global political thinking in the late 20th century, characterised by recognition of the need for environmentally, socially and culturally sustainable resource development. This shift entailed a move away from thinking of ‘nature’ and ‘culture’ as separate entities – the former existing to serve the latter – toward the possibility of embracing the intrinsic worth of the nonhuman world. Cultural landscape theory recognises ‘nature’ as at once both ‘natural’, and a ‘cultural’ construct. As such, it may offer a framework through which to progress in the quest for ‘sustainable development’. This study makes a contribution to this quest by asking whether contemporary developments in cultural landscape theory can contribute to rehabilitation strategies for Australian open-cut coal mining landscapes. The answer is ‘yes’. To answer the research question, a flexible, ‘emergent’ methodological approach has been used, resulting in the following outcomes. A thematic historical overview of landscape values and resource development in Australia post-1788, and a review of cultural landscape theory literature, contribute to the formation of a new theoretical framework: Reconnecting the Interrupted Landscape. This framework establishes a positive answer to the research question. It also suggests a method of application within the Australian open-cut coal mining landscape, a highly visible exemplar of the resource development landscape. This method is speculatively tested against the rehabilitation strategy of an operating open-cut coal mine, concluding with positive recommendations to the industry, and to government.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topography of the free energy landscape in phase space of a dense hard-sphere system characterized by a discretized free energy functional of the Ramakishnan-Yussouff form is investigated numerically using a specially devised Monte Carlo procedure. We locate a considerable number of glassy local minima of the free energy and analyze the distributions of the free energy at a minimum and an appropriately defined phase-space "distance" between different minima. We find evidence for the existence of pairs of closely related glassy minima("two-level systems"). We also investigate the way the system makes transitions as it moves from the basin of attraction of a minimum to that of another one after a start under nonequilibrium conditions. This allows us to determine the effective height of free energy barriers that separate a glassy minimum from the others. The dependence of the height of free energy barriers on the density is investigated in detail. The general appearance of the free energy landscape resembles that of a putting green: relatively deep minima separated by a fairly flat structure. We discuss the connection of our results with the Vogel-Fulcher law and relate our observations to other work on the glass transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic-nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. Results: In this study, we have explored the ligand induced conformational changes in H. pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H. pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. Conclusions: In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positions of potential energy minima for spherical monatomic sorbates in zeolite NaY have been identified for different sizes of the sorbate. It is found that for small sorbates (sigma less than or equal to 4.96 Angstrom) there are only six adsorption sites per alpha-cage, which are located close to the inner surface of the alpha-cage. For larger sorbates, additional sites of comparable energies appear close to the 12-ring window which forms the bottleneck for intercage diffusion. Minimum energy paths between these sites have been computed. These suggest that the barriers for both intracage and intercage site-to-site migrations are comparable and decrease with increase in sorbate size. Earlier simulation studies on the diffusion of monatomic sorbates in zeolites indicated that there is a dramatic change in the nature of dependence of D on sorbate size around 4.96 Angstrom, for zeolite NaY. Therefore, the present results suggest that the dependence of D on sorbate size and the changes in the potential energy landscape are correlated. The sorbate-zeolite system is characterized by a flatter potential energy landscape when the sorbate size is large. (C) 1999 American Institute of Physics. [S0021-9606(99)51110-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many interesting features of the dynamics of simple liquids near the glass transition may be understood in terms of properties of the free-energy landscape obtained from numerical studies of a model free-energy functional. Main results obtained from this approach are summarized and a list of references to relevant publications is provided. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing the relative orientation of the two benzene molecules in the dimer has remained an enigmatic challenge. Consensus has narrowed the choice of structures to either a T-shape, that may be tilted, or a parallel displaced arrangement, but the relatively small energy differences makes identifying the global minimum difficult. Here we report an ab initio Car-Parrinello Molecular Dynamics based metadynamics computation of the free-energy landscape of the benzene dimer. Our calculations show that although competing structures may be isoenergetic, free energy always favors a tilted T-shape geometry at all temperatures where the bound benzene dimer exist. (C) 2013 AIP Publishing LLC.