955 resultados para endocrine disrupting chemicals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-dispersible, photocatalytic Fe3O4@TiO2 core shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magnetic separation from the dispersion once photocatalytic degradation is complete. An attractive feature of these ``capture and destroy'' nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine disrupting chemicals (EDCs) can alter endocrine function in exposed animals. Such critical effects, combined with the ubiquity of EDCs in sewage effluent and potentially in tapwater, have led to concerns that they could be major physiological disruptors for wildlife and more controversially for humans. Although sewage effluent is known to be a rich source of EDCs, there is as yet no evidence for EDC uptake by invertebrates that live within the sewage treatment system. Here, we describe the use of an extraction method and GC–MS for the first time to determine levels of EDCs (e.g., dibutylphthalate, dioctylphthalate, bisphenol-A and 17β-estradiol) in tissue samples from earthworms (Eisenia fetida) living in sewage percolating filter beds and garden soil. To the best of our knowledge, this is the first such use of these techniques to determine EDCs in tissue samples in any organism. We found significantly higher concentrations of these chemicals in the animals from sewage percolating filter beds. Our data suggest that earthworms can be used as bioindicators for EDCs in these substrates and that the animals accumulate these compounds to levels well above those reported for waste water. The potential transfer into the terrestrial food chain and effects on wildlife are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine disrupting chemicals (EDCs) constitute a diverse group of chemical compounds which can alter endocrine function in exposed animals. Whilst most studies have focussed on exposure of wildlife to EDCs via aquatic routes, there is the potential for transfer into the terrestrial food chain through consumption of contaminated prey items developing in sewage sludge and waste water at sewage treatment works. In this study, we determine levels of EDCs in aerial insects whose larval stages develop on percolating filter beds at sewage treatment works. We compare absolute concentrations of known EDCs with those collected from aquatic environments not exposed to sewage effluent outflow. Our findings document for the first time that aerial invertebrates developing on sewage filter beds take up a range of chemicals thought to be incorporated from the sewage effluent, which act as endocrine disruptors. For two synthetic chemicals (17α-ethinylestradiol and butylated hydroxy aniline), concentrations were significantly higher in insects captured around percolating filter beds than sites over 2 km from the nearest sewage works. A number of species of insectivorous bats and birds, some of which are declining or threatened, use sewage works as principle foraging sites. We calculate approximate exposure levels for a species of bat known to forage within sewage works and suggest that further research is warranted to assess the ecological implications of consuming contaminated invertebrate prey

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In zebrafish, two isoforms of the aromatase gene exist, namely cyp19a1 and cyp19a2, expressed predominantly in the gonads and brain, respectively. In this study, we focus on characterizing the specificity of antibodies against the aromatase isoforms, and on (xeno)estrogen-induced changes of individual cyp19a2 mRNA concentrations in the brains of adult male zebrafish. Among three polyclonal antibodies studied, the one against CYP19A2 was found to be specific in Western blots and immunohistochemistry. Real-time RT-PCR analyses revealed strong interindividual variation of cyp19a2 levels in the brains of adult male zebrafish. After a three-week-exposure to (xeno)estrogens, mean values of cyp19a2 mRNA levels tended to increase, with significant induction at 200 ng 17beta-estradiol/L, but interindividual variation of cyp19a2 expression was maintained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine disruption has rarely been reported in field populations of the edible cockle and the context with the general health of the shellfish is unclear. This study examined the reproductive state of two Cerastoderma edule populations over a 6-month period to assess their reproductive condition, the incidence of intersex and presence of parasitic infection. A further seven native sites from south-west England were examined during the peak reproductive season to identify the presence of intersex within the region. Laboratory exposures of organisms collected from field populations showed a significantly female-biased sex ratio compared with controls when exposed to the endocrine disrupting chemicals, bisphenol-A (nominal concentration: 0.1 µg L−1) and 17β-oestradiol (nominal concentration: 0.1 µg L−1), but none of the chemical exposures induced intersex. Intersex was revealed in seven out of the nine native populations of C. edule sampled at peak reproductive season. The highest incidence and most severe case of intersex were reported at Lower Anderton on the River Tamer which also had a significantly female-biased sex ratio. Additionally, the dominant trematode family was the Bucephalaidae. Parasitic infection influences the maturity of C. edule by lowering both mean gonad index and condition index. These results suggest that endocrine disrupting chemicals could be contributing factors towards the development of intersex in C. edule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine disruption has rarely been reported in field populations of the edible cockle and the context with the general health of the shellfish is unclear. This study examined the reproductive state of two Cerastoderma edule populations over a 6-month period to assess their reproductive condition, the incidence of intersex and presence of parasitic infection. A further seven native sites from south-west England were examined during the peak reproductive season to identify the presence of intersex within the region. Laboratory exposures of organisms collected from field populations showed a significantly female-biased sex ratio compared with controls when exposed to the endocrine disrupting chemicals, bisphenol-A (nominal concentration: 0.1 µg L−1) and 17β-oestradiol (nominal concentration: 0.1 µg L−1), but none of the chemical exposures induced intersex. Intersex was revealed in seven out of the nine native populations of C. edule sampled at peak reproductive season. The highest incidence and most severe case of intersex were reported at Lower Anderton on the River Tamer which also had a significantly female-biased sex ratio. Additionally, the dominant trematode family was the Bucephalaidae. Parasitic infection influences the maturity of C. edule by lowering both mean gonad index and condition index. These results suggest that endocrine disrupting chemicals could be contributing factors towards the development of intersex in C. edule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine-disrupting chemicals (EDCs) are capable of interfering with normal hormone homeostasis by acting on several targets and through a wide variety of mechanisms. Unwanted exposure to EDCs can lead to a wide spectrum of adverse health effects, especially when exposure is during critical windows of development. Feed and food are considered to be among the main routes of inadvertent exposure to EDCs, so there is an important need for efficient detection of EDCs in these matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall objective of the research presented in this dissertation was to assess exposure to endocrine disrupting chemicals (EDCs), polychlorinated biphenyls (PCBs), phthalates, and bisphenol A (BPA) in the general population and evaluate their associations with adverse reproductive health effects, including cancers, in women. Given the proven contribution of unopposed estrogens to the risk for endometrial neoplasia or breast cancer, renewed health concerns have aroused about estrogen mimicking EDCs found in food, personal care products or as environmental contaminants. Our meta-analysis showed that exposure to estrogen mimicking PCBs increased summary risk of breast cancer and endometriosis. We further evaluated the relationship between endometriosis and breast cancer, and EDCs using a bioinformatics method. Our bioinformatics approach was able to identify genes with the potential to be involved in interaction with PCB, phthalates and BPA that may be important to the development of breast cancer and endometriosis. Therefore, we hypothesized that exposure to EDCs such as PCBs, phthalates, and BPA, results in adverse reproductive health effects in women. Using subject data and biomarkers available from the Center for Disease Controls National Health and Nutrition Examination Survey database we conducted a cross-sectional study of EDCs in relation to self-reported history of endometriosis, uterine leiomyomas, breast cancer, cervical cancer, ovarian cancer, and uterine cancer. Significantly higher body burdens of PCBs were found in women diagnosed with breast cancer, ovarian cancer, and uterine cancer compared to women without cancer. PCB 138 was significantly associated with breast cancer, cervical cancer, and uterine cancer, while PCBs 74 and 118 were significantly associated with ovarian cancer. The sum of dioxin-like PCBs were significantly associated with ovarian cancer (OR of 2.02, 95% CI: 1.06-3.85) and the sum of non-dioxin-like PCBs were significantly associated with uterine cancer (OR of 1.12, 95%CI: 1.03-1.23). Significantly higher body burdens of PCBs were also found in women diagnosed with endometriosis and uterine leiomyomas. Documenting the exposure to EDCs among the general U.S. population, and identifying agents associated with reproductive toxicity have the potential to fill research gaps and facilitate our understanding of the complex role environmental chemicals play in producing toxicity in reproductive organs.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall objective of the research presented in this dissertation was to assess exposure to endocrine disrupting chemicals (EDCs), polychlorinated biphenyls (PCBs), phthalates, and bisphenol A (BPA) in the general population and evaluate their associations with adverse reproductive health effects, including cancers, in women. Given the proven contribution of unopposed estrogens to the risk for endometrial neoplasia or breast cancer, renewed health concerns have aroused about estrogen mimicking EDCs found in food, personal care products or as environmental contaminants. Our meta-analysis showed that exposure to estrogen mimicking PCBs increased summary risk of breast cancer and endometriosis. We further evaluated the relationship between endometriosis and breast cancer, and EDCs using a bioinformatics method. Our bioinformatics approach was able to identify genes with the potential to be involved in interaction with PCB, phthalates and BPA that may be important to the development of breast cancer and endometriosis. Therefore, we hypothesized that exposure to EDCs such as PCBs, phthalates, and BPA, results in adverse reproductive health effects in women. Using subject data and biomarkers available from the Center for Disease Controls National Health and Nutrition Examination Survey database we conducted a cross-sectional study of EDCs in relation to self-reported history of endometriosis, uterine leiomyomas, breast cancer, cervical cancer, ovarian cancer, and uterine cancer. Significantly higher body burdens of PCBs were found in women diagnosed with breast cancer, ovarian cancer, and uterine cancer compared to women without cancer. PCB 138 was significantly associated with breast cancer, cervical cancer, and uterine cancer, while PCBs 74 and 118 were significantly associated with ovarian cancer. The sum of dioxin-like PCBs were significantly associated with ovarian cancer (OR of 2.02, 95% CI: 1.06-3.85) and the sum of non-dioxin-like PCBs were significantly associated with uterine cancer (OR of 1.12, 95%CI: 1.03-1.23). Significantly higher body burdens of PCBs were also found in women diagnosed with endometriosis and uterine leiomyomas. Documenting the exposure to EDCs among the general U.S. population, and identifying agents associated with reproductive toxicity have the potential to fill research gaps and facilitate our understanding of the complex role environmental chemicals play in producing toxicity in reproductive organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relevance of endocrine-disrupting compounds as potential contaminants of drinking water is reviewed, particularly in the reuse of wastewater. Growing populations and increasing intensification of land and water use for industry and agriculture have increased the need to reclaim wastewater for reuse, including to supplement the drinking water supply. The variety of anthropogenic chemicals that have been identified as potential endocrine disruptors in the environment and the problems arising from their use as human and livestock pharmaceuticals, as agricultural chemicals and in industry are discussed. The potentially adverse impact of these chemicals on human health and the ecology of the natural environment are reviewed. Data for the removal of estrogenic compounds from wastewater treatment are presented, together with the comparative potencies of estrogenic compounds. The relative exposure to estrogens of women on oral contraceptives, hormone replacement therapy, and through food consumption is estimated. A brief overview of some methods available or under development for the assessment of estrogenic activity in environmental samples is provided. The review concludes with a discussion of the directions for further investigation, which include human epidemiology, methodology development, and wastewater monitoring. (C) 2006 Wiley Periodicals, Inc.