7 resultados para endocitosis
Resumo:
La endocitosis y el tráfico de proteínas lisosomales son eventos esenciales en los parásitos patógenos ya que están directamente vinculados a procesos específicos vitales tales como la invasión de células hospedadoras, la nutrición y la diferenciación celular a estadios resistentes. En el parásito unicelular G. lamblia, las moléculas que participan en estos procesos fueron analizadas por nuestro grupo e incluyen la acción de las proteínas adaptadoras AP-1 y AP-2 y del coatómero clatrina, con implicancia incierta de otras proteínas adaptadoras. Recientemente, hemos identificado a la proteína GlENTHp (Giardia lamblia ENTH protein) que contiene un dominio de ENTH presente en las proteínas adaptadoras monoméricas epsina o epsinaR (proteína relacionada a epsina), que participan en la endocitosis y el tráfico de proteínas desde el aparato de Golgi a los endosomas, respectivamente, en otros tipos celulares. Hemos encontrado que GlENTHp se une clatrina y ubiquitina y, notablemente, también interactúa con la subunidad alfa de la AP-2 (que participan en la endocitosis) y la subunidad gamma de la AP-1 (implicada en el tráfico de Golgi-a-lisosoma). Encontramos también que GlENTHp estaría asociada a membrana a través de su unión a fosfoinosítidos vinculados al anclaje a la membrana plasmática y membrana de Golgi en células de mamífero. La reducción de la expresión de GlENTHp o la sobreexpresión de una mutante de GlENTHp no funcional mostró una acumulación inusual de material electrodenso en las vacuolas lisosomales periféricas o PVs, estando gravemente afectado el crecimiento de los trofozoítos. Un hallazgo similar se observó en trofozoítos salvajes tratados con lactoferrina, un metabolito antimicrobiano natural y una de las barreras de defensa del hospedador más importantes contra G. lamblia. El mismo efecto, se vió luego de la exposición de trofozoítos a LY294002, un inhibidor de las enzimas PI3 quinasas capaces de fosforilar fosfatidilinositol a fosfoinosítidos. Estos estudios acerca de la función molecular de drogas antiparasitarias y el análisis de su relación con la maquinaria endocítica nos permitirían inferir la utilidad clínica de esta droga natural en particular pero también nos permitirán establecer nuevas bases en la investigación de un enfoque de administración de drogas específicas a través de receptores de alta afinidad en general. Por lo tanto, en este proyecto nos proponemos continuar con el estudio del tráfico de proteínas mediado por clatrina implicado en el mantenimiento de la homeostasis de las PVs y su implicancia en la incorporación de giardicidas naturales. Nuevos hallazgos posiblemente nos darán una visión diferente de la función de las PVs y pueden brindar información sobre vías de intervención terapéutica alternativas contra Giardia y otros parásitos relacionados.
Resumo:
El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.
Resumo:
Los gliomas malignos representan una de las formas más agresivas de los tumores del sistema nervioso central (SNC). De acuerdo con la clasificación de los tumores cerebrales de la Organización Mundial de la Salud (OMS), los astrocitomas han sido categorizados en cuatro grados, determinados por la patología subyacente. Es así como los gliomas malignos (o de alto grado) incluyen el glioma anaplásico (grado III) así como el glioblastoma multiforme (GBM, grado IV),estos últimos los más agresivos con el peor pronóstico (1). El manejo terapéutico de los tumores del SNC se basa en la cirugía, la radioterapia y la quimioterapia, dependiendo de las características del tumor, el estadio clínico y la edad (2),(3), sin embargo ninguno de los tratamientos estándar es completamente seguro y compatible con una calidad de vida aceptable (3), (4). En general, la quimioterapia es la primera opción en los tumores diseminados, como el glioblastoma invasivo y el meduloblastoma de alto riesgo o con metástasis múltiple, pero el pronóstico en estos pacientes es muy pobre (2),(3). Solamente nuevas terapias dirigidas (2) como las terapias anti-angiogénicas (4); o terapias génicas muestran un beneficio real en grupos limitados de pacientes con defectos moleculares específicos conocidos (4). De este modo, se hace necesario el desarrollo de nuevas terapias farmacológicas para atacar los tumores cerebrales. Frente a las terapias los gliomas malignos son con frecuencia quimioresistentes, y esta resistencia parece depender de al menos dos mecanismos: en primer lugar, la pobre penetración de muchas drogas anticáncer a través de la barrera hematoencefálica (BBB: Blood Brain Barrier), la barrera del fluido sangre-cerebroespinal (BCSFB: Blood-cerebrospinal fluid barrier) y la barrera sangre-tumor (BTB: blood-tumor barrier). Dicha resistencia se debe a la interacción de la droga con varios transportadores o bombas de eflujo de droga ABC (ABC: ATP-binding cassette) que se sobre expresan en las células endoteliales o epiteliales de estas barreras. En segundo lugar, estos transportadores de eflujo de drogas ABC propios de las células tumorales confieren un fenotipo conocido como resistencia a multidrogas (MDR: multidrug resistance), el cual es característico de varios tumores sólidos. Este fenotipo también está presente en los tumores del SNC y su papel en gliomas es objeto de investigación (5). Por consiguiente el suministro de medicamentos a través de la BBB es uno de los problemas vitales en los tratamientos de terapia dirigida. Estudios recientes han demostrado que algunas moléculas pequeñas utilizadas en estas terapias son sustratos de la glicoproteína P (Pgp: P-gycoprotein), así como también de otras bombas de eflujo como las proteínas relacionadas con la resistencia a multidrogas (MRPs: multidrug resistance-related proteins (MRPs) o la proteína relacionada con cáncer de seno (BCRP: breast-cancer resistance related protein)) que no permiten que las drogas de este tipo alcancen el tumor (1). Un sustrato de Pgp y BCRP es la DOXOrubicina (DOXO), un fármaco utilizado en la terapia anti cáncer, el cual es muy eficaz para atacar las células del tumor cerebral in vitro, pero con un uso clínico limitado por la poca entrega a través de la barrera hematoencefálica (BBB) y por la resistencia propia de los tumores. Por otra parte las células de BBB y las células del tumor cerebral tienen también proteínas superficiales, como el receptor de la lipoproteína de baja densidad (LDLR), que podría utilizarse como blanco terapéutico en BBB y tumores cerebrales. Es asi como la importancia de este estudio se basa en la generación de estrategias terapéuticas que promuevan el paso de las drogas a través de la barrera hematoencefalica y tumoral, y a su vez, se reconozcan mecanismos celulares que induzcan el incremento en la expresión de los transportadores ABC, de manera que puedan ser utilizados como blancos terapéuticos.Este estudio demostró que el uso de una nueva estrategia basada en el “Caballo de Troya”, donde se combina la droga DOXOrubicina, la cual es introducida dentro de un liposoma, salvaguarda la droga de manera que se evita su reconocimiento por parte de los transportadores ABC tanto de la BBB como de las células del tumor. La construcción del liposoma permitió utilizar el receptor LDLR de las células asegurando la entrada a través de la BBB y hacia las células tumorales a través de un proceso de endocitosis. Este mecanismo fue asociado al uso de estatinas o drogas anticolesterol las cuales favorecieron la expresión de LDLR y disminuyeron la actividad de los transportadores ABC por nitración de los mismos, incrementando la eficiencia de nuestro Caballo de Troya. Por consiguiente demostramos que el uso de una nueva estrategia o formulación denominada ApolipoDOXO más el uso de estatinas favorece la administración de fármacos a través de la BBB, venciendo la resistencia del tumor y reduciendo los efectos colaterales dosis dependiente de la DOXOrubicina. Además esta estrategia del "Caballo de Troya", es un nuevo enfoque terapéutico que puede ser considerado como una nueva estrategia para aumentar la eficacia de diferentes fármacos en varios tumores cerebrales y garantiza una alta eficiencia incluso en un medio hipóxico,característico de las células cancerosas, donde la expresión del transportador Pgp se vió aumentada. Teniendo en cuenta la relación entre algunas vías de señalización reconocidas como moduladores de la actividad de Pgp, este estudio presenta no solo la estrategia del Caballo de Troya, sino también otra propuesta terapéutica relacionada con el uso de Temozolomide más DOXOrubicina. Esta estrategia demostró que el temozolomide logra penetrar la BBB por que interviene en la via de señalización de la Wnt/GSK3/β-catenina, la cual modula la expresión del transportador Pgp. Se demostró que el TMZ disminuye la proteína y el mRNA de Wnt3 permitiendo plantear la hipótesis de que la droga al disminuir la transcripción del gen Wnt3 en células de BBB, incrementa la activación de la vía fosforilando la β-catenina y conduciendo a disminuir la β-catenina nuclear y por tanto su unión al promotor del gen mdr1. Con base en los resultados este estudio permitió el reconocimiento de tres mecanismos básicos relacionados con la expresión de los transportadores ABC y asociados a las estrategias empleadas: el primero fue el uso de las estatinas, el cual condujo a la nitración de los transportadores disminuyendo su actividad por la via del factor de transcripción NFκB; el segundo a partir del uso del temozolomide, el cual metila el gen de Wnt3 reduciendo la actividad de la via de señalización de la la β-catenina, disminuyendo la expresión del transportador Pgp. El tercero consistió en la determinación de la relación entre el eje RhoA/RhoA quinasa como un modulador de la via (no canónica) GSK3/β-catenina. Se demostró que la proteína quinasa RhoA promovió la activación de la proteína PTB1, la cual al fosforilar a GSK3 indujo la fosforilación de la β-catenina, lo cual dio lugar a su destrucción por el proteosoma, evitando su unión al promotor del gen mdr1 y por tanto reduciendo su expresión. En conclusión las estrategias propuestas en este trabajo incrementaron la citotoxicidad de las células tumorales al aumentar la permeabilidad no solo de la barrera hematoencefálica, sino también de la propia barrera tumoral. Igualmente, la estrategia del “Caballo de Troya” podría ser útil para la terapia de otras enfermedades asociadas al sistema nervioso central. Por otra parte estos estudios indican que el reconocimiento de mecanismos asociados a la expresión de los transportadores ABC podría constituir una herramienta clave en el desarrollo de nuevas terapias anticáncer.
Resumo:
According to the classification of placental types among animals, the transfer of iron through the placenta can occur via: absorption connected to transferin through the outer surface of the trophoblast in direct contact with circulating maternal blood; absorption of the erythrocytes by the chorionic epithelium in direct contact with accumulation of blood extravased from haemotophagous areas; absorption by the chorionic epithelium in direct contact with iron enriched secretions from the endometrial glands and absorption by extravasations of the blood in the maternal-fetal surface and the subsequent phagocytosis of the erythrocytes by trophoblast cells described in bovine, small ruminants, canine and feline. The function of erythrophagocytosis observed after the extravasation of blood in the maternal-fetal interface is undefined in several species. Possibly, the iron is transferred to the fetus through the trophoblastic erythrophagocytosis in the hemophogous area of the placenta and also in the endometrial glands. In this literature survey, new methods of studies regarding placental transfer involving iron and other nutrients necessary for survival and maintenance of embryonic fetus to birth are proposed.
Resumo:
Research for new biocompatible and easily implantable materials continuously proposes new molecules and new substances with biological, chemical and physical characteristics, that are more and more adapted to aesthetic and reconstructive surgery and to the development of biomedical devices such as cardiovascular prostheses. Two classes of polymeric biomaterials seem to meet better these requirements: “hydrogels” , which includes polyalkylimide (PAI) and polyvinylalcohol (PVA) and “elastomers”, which includes polyurethanes (PUs). The first ones in the last decade have had a great application for soft tissue augmentation, due to their similarity to this tissue for their high water content, elasticity and oxygen permeability (Dini et al., 2005). The second ones, on the contrary, are widely used in cardiovascular applications (catheters, vascular grafts, ventricular assist devices, total artificial hearts) due to their good mechanical properties and hemocompatibility (Zdrahala R.J. and Zdrahala I.J., 1999). In the biocompatibility evaluation of these synthetic polymers, that is important for its potential use in clinical applications, a fundamental aspect is the knowledge of the polymers cytotoxicity and the effect of their interaction with cells, in particular with the cell populations involved in the inflammatory responses, i.e. monocyte/macrophages. In consideration of what above said, the aim of this study is the comprehension of the in vitro effect of PAI, PVA and PU on three cell lines that represent three different stages of macrophagic differentiation: U937 pro-monocytes, THP-1 monocytes and RAW 264.7 macrophages. Cytotoxicity was evaluated by measuring the rate of viability with MTT, Neutral Red and morphological analysis at light microscope in time-course dependent experiments. The influence of these polymers on monocyte/macrophage activation in terms of cells adhesion, monocyte differentiation in macrophages, antigens distribution, aspecific phagocytosis, fluid-phase endocitosis, pro-inflammatory cytokine (TNF-α, IL-1β, IL-6) and nitric oxide (NO) release was evaluated. In conclusion, our studies have indicated that the three different polymeric biomaterials are highly biocompatible, since they scarcely affected viability of U937, THP-1 and RAW 264.7 cells. Moreover, we have found that even though hydrogels and polyurethane influences monocyte/macrophage differentiation (depending on the particular type of cell and polymer), they are immunocompatible since they not induced significantly high cytokine release. For these reasons their clinical applications are strongly encouraged.
Resumo:
La comunicación entre las neuronas ocurre en regiones anatómicamente identificables denominadas sinapsis. Existen dos tipos de transmisión sináptica, las sinapsis químicas y las eléctricas, aunque predominan las sinapsis químicas. En este tipo de sinapsis, la comunicación neuronal ocurre en zonas especializadas de los axones, denominados terminales sinápticos, los cuales almacenan en su interior pequeñas vesículas que contienen un neurotransmisor. Ante la llegada de un potencial de acción al terminal presináptico, el flujo de calcio, generado a través de la apertura de canales de calcio voltaje-dependientes, provoca la fusión de las vesículas con la membrana del terminal presináptico, y la liberación del neurotransmisor a la hendidura sináptica. La fusión vesicular tiene lugar en regiones de membrana del terminal presináptico, molecularmente especializadas para dicho evento exocitótico, denominadas Zonas Activas. Este neurotransmisor liberado difunde por la hendidura sináptica y se une a receptores específicos ubicados en la membrana de la neurona postsináptica, propagándose así el impulso nervioso. Tras este evento exocitótico, que implica la fusión de multitud de vesículas, es necesario un proceso de endocitosis, que ocurre en las zonas perisinápticas, y que está encargado de recuperar las fracciones de membrana que formaban las vesículas sinápticas, con dos objetivos: 1. Impedir el aumento de la superficie de la zona activa, lo cual llevaría a su desestructuración, y 2. La formación de nuevas vesículas que se rellenen de neurotransmisor y puedan prepararse para una nueva ronda de exocitosis. La endocitosis que sigue a un estímulo moderado, está mediada por clatrina y recicla vesículas independientes preparadas para el rellenado con neurotransmisor. Tras estímulos intensos que provocan exocitosis de múltiples vesículas, la retirada de membrana ocurre a través de otro mecanismo más lento y menos eficaz, denominado endocitosis en masa, el cual recicla grandes fragmentos de membrana y acumula estructuras endosomales en el interior del terminal, los cuales no siempre rinden vesículas funcionales inmediatamente...
Resumo:
199 p.