Functional studies of the deubiquitinating enzymes USP19, USP4 and UCH-L1


Autoria(s): Velasco Pinto, Kelly Marcela
Contribuinte(s)

Lindsten, Kristina

Masucci, Maria Grazia

Camacho Navarro, Maria Marcela

Data(s)

02/12/2013

Resumo

El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.

ERACOL

Universidad del Rosario

Karolinska Institutet

The conjugation of ubiquitin to proteins, known as ubiquitination, has different cellular functions; they include targeting proteins for degradation by the proteasome, regulation of DNA damage repair signaling, membrane receptor signaling and endocytosis (1). The ubiquitin moieties can be de-conjugated from their substrates or other ubiquitin moieties by a large group of proteases named deubiquitinating enzymes (DUBs) (2). DUBs are essential for the maintenance of the ubiquitin homeostasis in the cell and regulation of the ubiquitination status of the different substrates. The diversity of these proteases hints on their specificity for certain targets and participation in particular cellular pathways. Although several DUBs have been thoroughly studied, at present the targets and physiological roles of most of them remain unknown. Here, we studied the functional roles of the ubiquitin specific protease 19 (USP19), USP4 and the ubiquitin C-terminal hydrolase (UCH-L1), using several cellular and molecular techniques. We found that, i) USP19 can be regulated by SIAH ubiquitin ligases, ii) USP19 is important for controlling the key regulator of response to hypoxia, HIF-1α, iii) USP4 is a proteasome-interacting DUB, iv) an mCherry-UCH-L1 chimera reproduces only partially previous phenotypes described for UCH-L1, and v) UCH-L1 promotes Yersinia pseudotuberculosis internalization.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/5113

Idioma(s)

spa

Publicador

Facultad de Ciencias Naturales y Matemáticas

Direitos

info:eu-repo/semantics/openAccess

Fonte

reponame:Repositorio Institucional EdocUR

instname:Universidad del Rosario

Pickart CM. Back to the future with ubiquitin. Cell. January 23, 2004;116(2):181-190

Komander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. August 2009;10(8):550-563

Simoni R, Hill R, Vaughan M. The use of isotope tracers to study intermediary metabolism: Rudolf Schoenheimer. Journal of Biological Chemistry. January 1, 2002

Turk V. Special issue: Proteolysis 50 years after the discovery of lysosome in honor of Christian de Duve. Biochim. Biophys. Acta. January 1, 2012;1824(1):1-2

Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. September 2005;12(9):1178-1190

Ciechanover A, Elias S, Heller H, Ferber S, Hershko A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. August 25, 1980;255(16):7525-7528

Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. U.S.A. April 1980;77(4):1783-1786

Hershko A, Ciechanover A, Rose IA. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc. Natl. Acad. Sci. U.S.A. July 1979;76(7):3107-3110

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. October 21, 2004;431(7011):931-945

Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol. February 2004;8(1):33-41

Hochstrasser M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biology. August 2000;2(8):E153-7

Jentsch S, Pyrowolakis G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. August 2000;10(8):335-342

Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta. November 29, 2004;1695(1-3):55-72

Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual review of cell and developmental biology. January 1, 2006;22:159-80

Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. July 10, 1983;258(13):8206-8214

Pickart CM. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001;70:503-533

Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. May 2009;10(5):319-331

van Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. April 2010;24(4):981-993

Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE. 2008;3(1):e1487

Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. April 2002;82(2):373-428

Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. August 2005;6(8):599-609

Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell. December 14, 2007;28(5):730-738

Deshaies RJ, Joazeiro CAP. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 2009;78:399-434

Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell. Sci. February 1, 2012;125(Pt 3):531-537

Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct. 2007;36:131-150

Dikic I, Robertson M. Ubiquitin ligases and beyond. BMC Biol. 2012;10(1):22

Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 2012;81:291-322

Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, et al A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. August 2003;21(8):921-926

Rieser E, Cordier SM, Walczak H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends in Biochemical Sciences. February 2013;38(2):94-102

Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. “Protein Modifications: Beyond the Usual Suspects” review series. EMBO Rep. June 2008;9(6):536-542

Hicke L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. March 2001;2(3):195-201

Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol. December 2004;8(6):610-616

Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, et al Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. April 3, 2009;137(1):133-145

Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, et al Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. April 3, 1997;386(6624):463-471

Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009;78:477-513

Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. March 2004;5(3):177-187

Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, et al Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA. January 31, 2012;109(5):1380-1387

Sauer RT, Baker TA. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. June 7, 2011;80:587-612

Tomko RJ, Funakoshi M, Schneider K, Wang J, Hochstrasser M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell. May 14, 2010;38(3):393-403

Smith DM, Chang S, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases“ carboxyl termini in the 20S proteasome”s alpha ring opens the gate for substrate entry. Mol. Cell. September 7, 2007;27(5):731-744

Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. February 9, 2012;482(7384):186-191

Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature. September 26, 2002;419(6905):403-407

Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta. November 29, 2004;1695(1-3):189-207

Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 2009;78:363-397

Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene. May 10, 2012;31(19):2373-2388

Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. July 23, 2009;138(2):389-403

Ventii KH, Wilkinson KD. Protein partners of deubiquitinating enzymes. Biochem. J. September 1, 2008;414(2):161-175

Nijman SMB, Luna-Vargas MPA, Velds A, Brummelkamp TR, Dirac AMG, Sixma TK, et al A genomic and functional inventory of deubiquitinating enzymes. Cell. December 2, 2005;123(5):773-786

Hassink GC, Zhao B, Sompallae R, Altun M, Gastaldello S, Zinin NV, et al The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Rep. July 2009;10(7):755-761

Iphöfer A, Kummer A, Nimtz M, Ritter A, Arnold T, Frank R, et al Profiling ubiquitin linkage specificities of deubiquitinating enzymes with branched ubiquitin isopeptide probes. Chembiochem. July 9, 2012;13(10):1416-1420

Combaret L, Adegoke OAJ, Bedard N, Baracos V, Attaix D, Wing SS. USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. Am. J. Physiol. Endocrinol. Metab. April 2005;288(4):E693-700

Lu Y, Adegoke OAJ, Nepveu A, Nakayama KI, Bedard N, Cheng D, et al USP19 deubiquitinating enzyme supports cell proliferation by stabilizing KPC1, a ubiquitin ligase for p27Kip1. Mol. Cell. Biol. January 2009;29(2):547-558

Pichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R, Habjan M, et al Viral immune modulators perturb the human molecular network by common and unique strategies. Nature. July 26, 2012;487(7408):486-490

Mei Y, Hahn AA, Hu S, Yang X. The USP19 deubiquitinase regulates the stability of c-IAP1 and c-IAP2. J. Biol. Chem. October 14, 2011;286(41):35380-35387

Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, et al ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. May 25, 2007;316(5828):1160-1166

Luna-Vargas MPA, Faesen AC, van Dijk WJ, Rape M, Fish A, Sixma TK. Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep. Nature Publishing Group; March 18, 2011;12(4):365-372

Zhao B, Schlesiger C, Masucci MG, Lindsten K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. August 2009;13:1886-1895

Fan Y, Yu Y, Mao R, Tan X, Xu G, Zhang H, et al USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation. October 1, 2011;18(10):1547-60

Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, et al Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J. January 16, 2012;441(3):979-986

Zhou F, Zhang X, van Dam H, Dijke ten P, Huang H, Zhang L. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J. Biol. Chem. March 30, 2012;287(14):11002-10

Zhang X, Berger FG, Yang J, Lu X. USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. The EMBO Journal. Nature Publishing Group; April 26, 2011;30(11):2177-2189

Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, et al USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nature Cell Biology. Nature Publishing Group; June 17, 2012;14(7):717-726

Gray DA, Inazawa J, Gupta K, Wong A, Ueda R, Takahashi T. Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. Oncogene. June 1, 1995;10(11):2179-83

Frederick A, Rolfe M, Chiu MI. The human UNP locus at 3p21.31 encodes two tissue-selective, cytoplasmic isoforms with deubiquitinating activity that have reduced expression in small cell lung carcinoma cell lines. Oncogene. January 15, 1998;16(2):153-65

Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. November 3, 1989;246(4930):670-673

Larsen CN, Price JS, Wilkinson KD. Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues. Biochemistry. May 28, 1996;35(21):6735-6744

Walters BJ, Campbell SL, Chen PC, Taylor AP, Schroeder DG, Dobrunz LE, et al Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol Cell Neurosci. December 2008;39(4):539-548

Osaka H. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics. July 1, 2003;12(16):1945-1958

Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, et al Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc. Natl. Acad. Sci. U.S.A. March 21, 2006;103(12):4675-4680

Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. October 18, 2002;111(2):209-218

Bradbury JM, Thompson RJ. Immunoassay of the neuronal and neuroendocrine marker PGP 9.5 in human tissues. J. Neurochem. February 1985;44(2):651-653

Sakurai M, Sekiguchi M, Zushida K, Yamada K, Nagamine S, Kabuta T, et al Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene. Eur. J. Neurosci. February 2008;27(3):691-701

Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, et al Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. September 1999;23(1):47-51

Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al The ubiquitin pathway in Parkinson's disease. Nature. October 1, 1998;395(6701):451-452.

Maraganore DM, Farrer MJ, Hardy JA, Lincoln SJ, McDonnell SK, Rocca WA. Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson's disease. Neurology. November 10, 1999;53(8):1858-1860

Löwe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD. Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J. Pathol. June 1990;161(2):153-160

Karim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, et al Human Papillomavirus (HPV) Upregulates the Cellular Deubiquitinase UCHL1 to Suppress the Keratinocyte's Innate Immune Response. PLoS Pathog. May 2013;9(5):e1003384

Hurst-Kennedy J, Chin L, Li L. Ubiquitin C-terminal hydrolase l1 in tumorigenesis. Biochem Res Int. 2012;2012:123706

Jang MJ, Baek SH, Kim JH. UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett. March 28, 2011;302(2):128-135

Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ, et al Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. January 8, 2009;28(1):117-127

Li L, Tao Q, Jin H, van Hasselt A, Poon FF, Wang X, et al The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. June 1, 2010;16(11):2949-58

Xiang T, Li L, Yin X, Yuan C, Tan C, Su X, et al The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS ONE. January 1, 2012;7(1):e29783

Young KH. Yeast two-hybrid: so many interactions, (in) so little time... Biol. Reprod. February 1998;58(2):302-311

Berggård T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics. August 2007;7(16):2833-2842

Shoemaker BA, Panchenko AR. Deciphering Protein–Protein Interactions. Part I. Experimental Techniques and Databases. PLoS Comput Biol. 2007;3(3):e42

Phizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol. Rev. March 1995;59(1):94-123

Klockenbusch C, Kast J. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin beta-1. Journal of Biomedicine and Biotechnology. January 1, 2010;2010:1-13

Sutherland B, Toews J, Kast J. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. Journal of mass spectrometry : JMS. June 1, 2008;43(6):699-715

Einarson M, Pugacheva E. Identification of protein-protein interactions with glutathione-S-transferase (GST) fusion proteins. Cold Spring Harbor. January 1, 2007

Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. June 13, 2010;397(8):3173-3178

Lichtman JW, Conchello J. Fluorescence microscopy. Nature Methods. December 1, 2005;2(12):910-919

Nwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC. Introduction to Confocal Microscopy. Journal of Investigative Dermatology. December 1, 2012;132(12):e3

House CM, Frew IJ, Huang H, Wiche G, Traficante N, Nice E, et al A binding motif for Siah ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. March 18, 2003;100(6):3101-3106

Nakayama K, Ronai Z. Siah: new players in the cellular response to hypoxia. Cell Cycle. November 2004;3(11):1345-1347

Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR. Oxygen sensing in the body. Prog. Biophys. Mol. Biol. July 2006;91(3):249-286

Chen F, Sugiura Y, Myers KG, Liu Y, Lin W. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl. Acad. Sci. U.S.A. January 26, 2010;107(4):1636-1641

Frisan T, Coppotelli G, Dryselius R, Masucci MG. Ubiquitin C-terminal hydrolase-L1 interacts with adhesion complexes and promotes cell migration, survival, and anchorage independent growth. FASEB J. December 2012;26(12):5060-5070

Buus R, Faronato M, Hammond DE, Urbé S, Clague MJ. Deubiquitinase activities required for hepatocyte growth factor-induced scattering of epithelial cells. Current biology : CB. September 15, 2009;19(17):1463-6

Kim JH, Jung EJ, Lee HS, Kim MA, Kim WH. Comparative analysis of DNA methylation between primary and metastatic gastric carcinoma. Oncology reports. May 1, 2009;21(5):1251-9

Rolén U, Freda E, Xie J, Pfirrmann T, Frisan T, Masucci MG. The ubiquitin C-terminal hydrolase UCH-L1 regulates B-cell proliferation and integrin activation. Journal of Cellular and Molecular Medicine. August 1, 2009;13(8B):1666-78

Bassères E, Coppotelli G, Pfirrmann T, Andersen JB, Masucci M, Frisan T. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton. Cellular Microbiology. November 1, 2010;12(11):1622-33

Arnaout MA, Mahalingam B, Xiong J. Integrin structure, allostery, and bidirectional signaling. Annual review of cell and developmental biology. January 1, 2005;21:381-410

Buckley CD, Rainger GE, Bradfield PF, Nash GB, Simmons DL. Cell adhesion: more than just glue (review). Molecular membrane biology. January 1, 1998;15(4):167-76

Harburger DS, Calderwood DA. Integrin signalling at a glance. J. Cell. Sci. January 15, 2009;122(Pt 2):159-63

Carragher NO, Frame MC. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. May 2004;14(5):241-249

Zaidel-Bar R, Itzkovitz S, Ma'ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nature Cell Biology. August 1, 2007;9(8):858-67

Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology. September 1, 2010;11(9):633-643

Huttenlocher A, Horwitz AR. Integrins in Cell Migration. Cold Spring Harbor Perspectives in Biology. September 1, 2011;3(9):a005074-a005074

Guan JL. Role of focal adhesion kinase in integrin signaling. The international journal of biochemistry & cell biology. August 1, 1997;29(8-9):1085-96

Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene. October 18, 2004;23(48):7947-56

Peng X, Nelson ES, Maiers JL, DeMali KA. New insights into vinculin function and regulation. International review of cell and molecular biology. January 1, 2011;287:191-231

Berens C, Hillen W. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. Eur J Biochem. August 2003;270(15):3109-3121

Pizarro-Cerdá J, Cossart P. Bacterial Adhesion and Entry into Host Cells. Cell. February 1, 2006;124(4):715-727

Veiga E, Cossart P. The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol. October 1, 2006;16(10):499-504

Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science. April 9, 2004;304(5668):242-8

Burrows JF, Johnston JA. Regulation of cellular responses by deubiquitinating enzymes: an update. Frontiers in bioscience (Landmark edition). January 1, 2012;17:1184-200

Glittenberg M, Ligoxygakis P. CYLD: a multifunctional deubiquitinase. Fly. January 1, 2007;1(6):330-2

Baek K. Cytokine-regulated protein degradation by the ubiquitination system. Current protein & peptide science. April 1, 2006;7(2):171-7

Yoshida H, Jono H, Kai H, Li J. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J. Biol. Chem. December 9, 2005;280(49):41111-21

Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Molecular biology of the cell. May 1, 2008;19(5):1903-11

Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N, et al Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J. Cell. Sci. March 1, 2009;122(Pt 5):678-86

Kessler BM, Edelmann MJ. PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochem. Biophys. June 2011;60(1-2):21-38

de Jong RN, Ab E, Diercks T, Truffault V, Daniëls M, Kaptein R, et al Solution structure of the human ubiquitin-specific protease 15 DUSP domain. J. Biol. Chem. February 24, 2006;281(8):5026-31

Luna-Vargas MPA, Faesen AC, van Dijk WJ, Rape M, Fish A, Sixma TK. Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep. Nature Publishing Group; March 18, 2011;12(4):365-372

Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, et al Deubiquitinating Enzyme Ubp6 Functions Noncatalytically to Delay Proteasomal Degradation. Cell. October 6, 2006;127(1):99-111

Skaug B, Chen J, Fenghe du, He J, Ma A, Chen Z. Direct, Noncatalytic Mechanism of IKK Inhibition by A20. Mol. Cell. November 1, 2011;44(4):559-571

Turk B. Targeting proteases: successes, failures and future prospects. Nature reviews. Drug discovery. September 1, 2006;5(9):785-99

Love KR, Catic A, Schlieker C, Ploegh HL. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol. November 2007;3(11):697-705

Lim K, Baek K. Deubiquitinating enzymes as therapeutic targets in cancer. Current pharmaceutical design. January 1, 2013;19(22):4039-52

D'Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K, de Cesare M, et al Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nature medicine. December 1, 2011;17(12):1636-40

Palavras-Chave #574.1925 #Enzimas #Proteinas #Ubiquitina #Enzimas deubiquitinizantes #Ubiquitin #Deubiquitinating enzymes #UCH-L1 #USP19 #USP4
Tipo

info:eu-repo/semantics/doctoralThesis

info:eu-repo/semantics/acceptedVersion