22 resultados para enamine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive immunization has emerged as a new tool for the study of biological catalysis. A powerful application resulted in catalytic antibodies that use an enamine mechanism akin to that used by the class I aldolases. With regard to the evolution of enzyme mechanisms, we investigated the utility of an enamine pathway for the allylic rearrangement exemplified by Δ5-3-ketosteroid isomerase (KSI; EC 5.3.3.1). Our aldolase antibodies were found to catalyze the isomerization of both steroid model compounds and steroids. The kinetic and chemical studies showed that the antibodies afforded rate accelerations up to a factor of 104 by means of an enamine mechanism in which imine formation was the rate-determining step. In light of our observations and the enzyme studies by other workers, we suggest that an enamine pathway could have been an early, viable KSI mechanism. Although this pathway is amenable to optimization for increased catalytic power, it appears that certain factors precluded its evolution in known KSI enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The condensation product of 2-carbethoxycyclopentanone and ethyl cyanoacetate is ethyl 2-carbethoxycyclopentylidene cyanoacetate (IIa) and not the one described by Kon and Nanji. Similarly, 2-carbomethoxycyclopentanone and methyl cyanoacetate yield methyl 2-carbomethoxycyclopentylidene cyanoacetate (IIb). The by-products obtained in the first reaction are cyclopentylidene cyanoacetate (IV) and the enamine of 2-carbethoxycyclopentanone (VIa).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

302 p. : gráf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

手性胺是合成天然产物和手性药物的重要中间体,亚胺和烯胺的不对称催化还原是制备手性胺最直接有效的方式之一。手性有机小分子催化的亚胺不对称还原已取得了可喜的进展,但到目前为止,有机小分子催化的烯胺不对称还原,尤其是环状烯胺的不对称还原还少有报道。 本研究从手性叔丁基亚磺酰胺出发,设计并合成了一系列含有叔丁基亚磺酰基的新型脲类及硫脲类催化剂,并将其用于催化三氯硅烷对烯胺的不对称还原,尤其是1, 4-二氢吡啶酯类环状烯胺的不对称还原。通过对催化反应条件的优化,发现当添加1eq H2O时,反应收率和对映选择性明显提高,获得高达99% 的收率和88% ee,同时也取得了很好的非对映选择性(dr = 8:92)。首次实现了三氯硅烷对1, 4-二氢吡啶酯类环状烯胺的高立体选择性还原。 通过机理方面的研究,我们推测反应过程中可能是:首先,底物1, 4-二氢吡啶酯与催化剂形成氢键而被活化,当加入添加剂后,添加剂与三氯硅烷反应释放出一个质子,然后受活化的1, 4-二氢吡啶酯捕获该质子转变成更活泼的亚胺正离子的中间体。随后,在催化剂上的手性硫氧的活化下,三氯硅烷的负氢加成到受活化的亚胺正离子的中间体上,最后生成比较有利的反式产物1, 4, 5, 6-四氢吡啶乙酯。 Calalytic enantioselective reduction of imines and enamines represents one of the most straightforward and efficient methods for the preparation of chiral amines, which is an important class of intermediates for the synthesis of natural products and chiral drugs. Significant progresses have been made in organocatalytic enantioselective reduction of imines. However, asymmetric reduction of enamines, especially of cyclic enamines catalyzed by small organocatalysts has scarcely been reported. In this study, starting from chiral tert-butanesulfinamide, a series of structurally simple tert-butanesulfinyl urea and thiourea organocatalysts were developed and employed in asymmetric reduction of enamines by triclorosilane, particularly in the reduction of cyclic enamines such as Hantzsch 1, 4-dihydropyridines. During the optimization of reaction condictions, we found that the addition of one equivalent of H2O could significantly improve the yields and enatioselectivities. Under optimal condictions, 99% yield, up to 88% ee, and 8:92 diastereomeric ratio were obtained. Thus, we have for the first time realized the highly stereoselective reduction of Hantzsch 1, 4-dihydropyridines catalyzed by triclorosilane. As for the mechanism, we speculate that the Hantzsch 1, 4-dihydropyridine was firstly engaged with the catalyst through hydrogen bond. The proton released from the reaction of the additive and triclorosilane next added to one of the C=C bond to make an active iminium intermediate, which was then attacked by the nucleophlic hydrogen of HSiCl3 activated by the Lewis basic sulfinyl function of the catalyst to provide superior trans-1, 4, 5, 6-tetrahydropyridine products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

手性胺不仅是许多天然产物和手性药物的重要结构单元,而且也是非常有用的拆分试剂、手性配体和手性催化剂。亚胺和烯胺的不对称催化还原是制备手性胺的最直接有效的方式之一,手性有机小分子催化的亚胺不对称还原已取得了很大的进展,但到目前为止,有机小分子催化的烯胺不对称还原极少见文献报道。 本研究以廉价的三氯氢硅为氢源、DMF 等路易斯碱为催化剂实现了烯胺的高效还原。通过反应条件的优化,各种烯胺底物在0.1 eq. DMF 催化下、12 个小时内可以获得非常高的收率(>93%)。 在本课题组前期研究的基础上,我们筛选并设计了一系列以手性哌啶酸和叔丁基亚磺酰胺为母体的有机小分子路易斯碱催化剂,它们能催化三氯氢硅对(Z)-N-苄氧羰基-1-苯基丙烯胺的不对称还原,获得很高的收率和中等的对映选择性,并且具有很好的底物普适性。另外,通过机理方面的研究,我们推测在反应过程中一分子烯胺先捕获一个质子而转变为亚胺正离子,然后受到路易斯碱活化的三氯氢硅中的富电氢原子进攻该亚胺正离子得到还原产物。 另外,本文列出了在此课题进展中所发现的一些新反应,并且试图去阐释这些反应的作用机理。 Catalytic enantioselective reduction of imines and enamines represents one of the most straightforward and efficient methods for the preparation of chiral amines, which are not only important building blocks of many natrural products and chiral drugs, but also can serve as useful resolution reagents, chiral ligands and chiral catalysts. By now, asymmetric reduction of enamines catalyzed by organocatalysts has scarcely been reported, although organocatalyzed enantioselective reduction of imines has already gained great progress. In this study, we report the DMF-catalyzed reduction of enamines with high yields using HSiCl3 as the reducing agent. Under the optimized reaction conditions, various enamines can be reduced in the presence of 0.1 eq. DMF with high yields (>93%) in 12 hours. We screened a set of Lewis base organocatalysts derived from chiral pipecolinic acid and tert-butanesulfinamide for the reduction of (Z)-N-Cbz-1- phenylpropenamine, including newly designed ones and some of those previously developed in our lab. However, only moderate stereoselectivities, albeit high yields were obtained. As for the mechanism, we speculate that the enamine firstly engages a proton to form an iminium species, which is then attacked by the nucleophlic hydrogen of HSiCl3 activated by Leiws base. During the above studies, we have also discovered some new reactions, for which feasible mechanisms were proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cocondensation of nickel with a number of unsaturated ligands was studied, as was the cocondensation with a number of mixed ligand systems. Enamines were found not to react with nickel while acrylonitrile was polymerized. In the mixed ligand syst.ems different products were obtained than when the ligands were cocondensed individually. Cocondensations of benzyl halide/allyl halide mixtures gave unstable products that were not observed when the halides were cocondensed individually. The effect of Kao-Wool insulation on nickel/benzyl halide cocondensations was found to be significant. Kao-Wool caused the bulk of the benzyl halide to be polymeri zed to a number of poly-benzylic species. An alkali metal reactor was designed for the evaporation of sodium and potassium atoms into cold solutions of metal halide and an or ganic substrate. This apparatus was used to synthesize Ni(P¢3 )3' but proved unsuccessful for synthesizing a nickel-enamine compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computational study, and in particular the density functional theory (DFT) study of the organocatalytic α-chlorination-aldol reaction and the chiral backbone Frustrated Lewis Pair (FLP) system served as a valuable tool for experimental purposes. This thesis describes methods to consider different transition states of the proline- catalyzed α-chlorination aldol reaction to determine the reasonable transition state in the reaction between the enamine and α-chloro aldehydes. Moreover, the novel intramolecular Frustrated Lewis pair based on a chiral backbone for the asymmetric hydrogenation of imines and enamines was designed and the ability of hydrogen splitting by this new FLP system was examined by computational modeling and calculating the hydrogen activation energy barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic DNA m5C methyltransferases (MTases) play a major role in many epigenetic regulatory processes like genomic imprinting, X-chromosome inactivation, silencing of transposons and gene expression. Members of the two DNA m5C MTase families, Dnmt1 and Dnmt3, are relatively well studied and many details of their biological functions, biochemical properties as well as interaction partners are known. In contrast, the biological functions of the highly conserved Dnmt2 family, which appear to have non-canonical dual substrate specificity, remain enigmatic despite the efforts of many researchers. The genome of the social amoeba Dictyostelium encodes Dnmt2-homolog, the DnmA, as the only DNA m5C MTase which allowed us to study Dnmt2 function in this organism without interference by the other enzymes. The dnmA gene can be easily disrupted but the knock-out clones did not show obvious phenotypes under normal lab conditions, suggesting that the function of DnmA is not vital for the organism. It appears that the dnmA gene has a low expression profile during vegetative growth and is only 5-fold upregulated during development. Fluorescence microscopy indicated that DnmA-GFP fusions were distributed between both the nucleus and cytoplasm with some enrichment in nuclei. Interestingly, the experiments showed specific dynamics of DnmA-GFP distribution during the cell cycle. The proteins colocalized with DNA in the interphase and were mainly removed from nuclei during mitosis. DnmA functions as an active DNA m5C MTase in vivo and is responsible for weak but detectable DNA methylation of several regions in the Dictyostelium genome. Nevertheless, gel retardation assays showed only slightly higher affinity of the enzyme to dsDNA compared to ssDNA and no specificity towards various sequence contexts, although weak but detectable specificity towards AT-rich sequences was observed. This could be due to intrinsic curvature of such sequences. Furthermore, DnmA did not show denaturant-resistant covalent complexes with dsDNA in vitro, although it could form covalent adducts with ssDNA. Low binding and methyltransfer activity in vitro suggest the necessity of additional factor in DnmA function. Nevertheless, no candidates could be identified in affinity purification experiments with different tagged DnmA fusions. In this respect, it should be noted that tagged DnmA fusion preparations from Dictyostelium showed somewhat higher activity in both covalent adduct formation and methylation assays than DnmA expressed in E.coli. Thus, the presence of co-purified factors cannot be excluded. The low efficiency of complex formation by the recombinant enzyme and the failure to define interacting proteins that could be required for DNA methylation in vivo, brought up the assumption that post-translational modifications could influence target recognition and enzymatic activity. Indeed, sites of phosphorylation, methylation and acetylation were identified within the target recognition domain (TRD) of DnmA by mass spectrometry. For phosphorylation, the combination of MS data and bioinformatic analysis revealed that some of the sites could well be targets for specific kinases in vivo. Preliminary 3D modeling of DnmA protein based on homology with hDNMT2 allowed us to show that several identified phosphorylation sites located on the surface of the molecule, where they would be available for kinases. The presence of modifications almost solely within the TRD domain of DnmA could potentially modulate the mode of its interaction with the target nucleic acids. DnmA was able to form denaturant-resistant covalent intermediates with several Dictyostelium tRNAs, using as a target C38 in the anticodon loop. The formation of complexes not always correlated with the data from methylation assays, and seemed to be dependent on both sequence and structure of the tRNA substrate. The pattern, previously suggested by the Helm group for optimal methyltransferase activity of hDNMT2, appeared to contribute significantly in the formation of covalent adducts but was not the only feature of the substrate required for DnmA and hDNMT2 functions. Both enzymes required Mg2+ to form covalent complexes, which indicated that the specific structure of the target tRNA was indispensable. The dynamics of covalent adduct accumulation was different for DnmA and different tRNAs. Interestingly, the profiles of covalent adduct accumulation for different tRNAs were somewhat similar for DnmA and hDNMT2 enzymes. According to the proposed catalytic mechanism for DNA m5C MTases, the observed denaturant-resistant complexes corresponded to covalent enamine intermediates. The apparent discrepancies in the data from covalent complex formation and methylation assays may be interpreted by the possibility of alternative pathways of the catalytic mechanism, leading not to methylation but to exchange or demethylation reactions. The reversibility of enamine intermediate formation should also be considered. Curiously, native gel retardation assays showed no or little difference in binding affinities of DnmA to different RNA substrates and thus the absence of specificity in the initial enzyme binding. The meaning of the tRNA methylation as well as identification of novel RNA substrates in vivo should be the aim of further experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asymmetric hydrogenation of C=C bonds is of the highest importance in organic synthesis, and such reactions are currently carried out with organometallic homogeneous catalysts. Achieving heterogeneous metal-catalyzed hydrogenation, a highly desirable goal, necessitates forcing the crucial enantiodifferentiating step to take place at the metal surface. By synthesis and application of six chiral sulfide ligands that anchor robustly to Pd nanoparticles and resist displacement, we have for the first time accomplished heterogeneous enantioselective catalytic hydrogenation of isophorone. High resolution XPS data established that ligand adsorption from solution occurred exclusively on the Pd nanoparticles and not on the carbon support. All ligands contained a pyrrolidine nitrogen to enable their interaction with the isophorone substrate while the sulfide functionality provided the required interaction with the Pd surface. Enantioselective turnover numbers of up to similar to 100 product molecules per ligand molecule were found with a very large variation in asymmetric induction between ligands: observed enantiomeric excesses increased with increasing size of the alkyl group in the sulfide. This likely reflects varying degrees of ligand dispersion on the surface: bulky substituent groups hinder close approach of ligand molecules to each other, inhibiting close-packed island formation, favoring dispersion as separate molecules, and leading to effective asymmetric induction. Conversely, small substituents favor island formation leading to very low asymmetric induction. Enantioselective reaction most likely involves initial formation of an enamine or iminium species, confirmed by use of an analogous tertiary amine, which leads to racemic product. Ligand rigidity and resistance to self-assembled monolayer formation are important attributes that should be designed into improved chiral modifiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organocatalytic gels based on the dipeptide sequence L-Pro-L-Val have been studied by two different FTIR techniques. This suggests a different arrangement of the gelator molecules in the self-assembled fibers depending on the organic solvent employed. In acetonitrile and nitromethane the structure of the supramolecular aggregates is similar and provides similar catalytic properties (supramolecularenhancement of basicity). In contrast, the self-assembled fibers obtained in toluene clearly presented a different molecular arrangement consistent with its different catalytic behaviour (enamine-based catalysis). In addition these gels have been studied by microscopy and rheology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multicomponent Reactions are defined as reactions between three or more reagents in a single reaction step in the same reaction vial, forming a product that includes the majority of atoms and structural characteristics of the reagents. Thus these reactions save time and energy. One of the ways to improve the yield and reaction time of a multicomponent reaction is to use different catalysts, an example of catalyst that shows great potential and has been studied in recent years is the molecular iodine is known to be a Lewis acid with high catalytic power. The functionalized piperidines, also known as tetrahydropyridines, are alkaloids that have pharmacological potential, this is due to the piperidine ring present in many natural product structures with muscarinic activity, nicotine, analgesic, antipsychotic, anti-proliferative, among others. In this paper we describe studies about on the application of molecular iodine (I2) in the multicomponent reaction between aniline derivatives, benzaldehyde and β-ketoester (methyl acetoacetate) for the synthesis of functionalized piperidines and the synthesis of a corresponding piperidone by acid hydrolysis. Data analysis allowed us to demonstrate the efficacy of molecular iodine in the synthesis of functionalized piperidines, obtaining results with yields 44-87% and short reaction time of 8 to 24 hours, and the efficacy of acid hydrolysis of enamine in the structure of the tetrahydropyridine derivative in a yield of 81%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water is a safe, harmless, and environmentally benign solvent. From an eco-sustainable chemistry perspective, the use of water instead of organic solvent is preferred to decrease environmental contamination. Moreover, water has unique physical and chemical properties, such as high dielectric constant and high cohesive energy density compared to most organic solvents. The different interactions between water and substrates, make water an interesting candidate as a solvent or co-solvent from an industrial and laboratory perspective. In this regard, organic reactions in aqueous media are of current interest. In addition, from practical and synthetic standpoints, a great advantage of using water is immediately evident, since it does not require any preliminary drying process. This thesis was found on this aspect of chemical research, with particular attention to the mechanisms which control organo and bio-catalysis outcome. The first part of the study was focused on the aldol reaction. In particular, for the first time it has been analyzed for the first time the stereoselectivity of the condensation reaction between 3-pyridincarbaldehyde and the cyclohexanone, catalyzed by morpholine and 4-tertbutyldimethylsiloxyproline, using water as sole solvent. This interest has resulted in countless works appeared in the literature concerning the use of proline derivatives as effective catalysts in organic aqueous environment. These studies showed good enantio and diastereoselectivities but they did not present an in depth study of the reaction mechanism. The analysis of the products diastereomeric ratios through the Eyring equation allowed to compare the activation parameters (ΔΔH≠ and ΔΔS≠) of the diastereomeric reaction paths, and to compare the different type of catalysis. While morpholine showed constant diasteromeric ratio at all temperatures, the O(TBS)-L-proline, showed a non-linear Eyring diagram, with two linear trends and the presence of an inversion temperature (Tinv) at 53 ° C, which denotes the presence of solvation effects by water. A pH-dependent study allowed to identify two different reaction mechanisms, and in the case of O(TBS)-L-proline, to ensure the formation of an enaminic species, as a keyelement in the stereoselective process. Moreover, it has been studied the possibility of using the 6- aminopenicillanic acid (6-APA) as amino acid-type catalyst for aldol condensation between cyclohexanone and aromatic aldehydes. A detailed analysis of the catalyst regarding its behavior in different organic solvents and pH, allowed to prove its potential as a candidate for green catalysis. Best results were obtained in neat conditions, where 6-APA proved to be an effective catalyst in terms of yields. The catalyst performance in terms of enantio- and diastereo-selectivity, was impaired by the competition between two different catalytic mechanisms: one via imine-enamine mechanism and one via a Bronsted-acid catalysis. The last part of the thesis was dedicated to the enzymatic catalysis, with particular attention to the use of an enzyme belonging to the class of alcohol dehydrogenase, the Horse Liver Alcohol Dehydrogenase (HLADH) which was selected and used in the enantioselective reduction of aldehydes to enantiopure arylpropylic alcohols. This enzyme has showed an excellent responsiveness to this type of aldehydes and a good tolerance toward organic solvents. Moreover, the fast keto-enolic equilibrium of this class of aldehydes that induce the stereocentre racemization, allows the dynamic-kinetic resolution (DKR) to give the enantiopure alcohol. By analyzing the different reaction parameters, especially the pH and the amount of enzyme, and adding a small percentage of organic solvent, it was possible to control all the parameters involved in the reaction. The excellent enatioselectivity of HLADH along with the DKR of arylpropionic aldehydes, allowed to obtain the corresponding alcohols in quantitative yields and with an optical purity ranging from 64% to >99%.