916 resultados para elliptic functions elliptic integrals weierstrass function hamiltonian


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to study a generalized form of elliptic-type integrals which unify and extend various families of elliptic-type integrals studied recently by several authors. In a recent communication [1] we have obtained recurrence relations and asymptotic formula for this generalized elliptic-type integral. Here we shall obtain some more results which are single and multiple integral formulae, differentiation formula, fractional integral and approximations for this class of generalized elliptic-type integrals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo de investigación de maestría contiene algunas reflexiones en torno a la emergencia histórica de la función de Weierstrass. Entre otros elementos interesantes, se prueba que dicha función se hubiera podido construir con los elementos disponibles en la época, es decir, los aportes de Abel, Jacobi y Liouville en el campo de las funciones elípticas. También se precisa la contribución original de Weierstrass en este campo, la cual consistió en fundar la teoría de las funciones elípticas sobre la base firme de los productos y las series infinitas; claro está, aprovechando las ventajas del lenguaje de la Variable Compleja.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact solution for the free vibration problem of non-linear cubic spring mass system with Coulomb damping is obtained during each half cycle, in terms of elliptic functions. An expression for the half cycle duration as a function of the mean amplitude during the half cycle is derived in terms of complete elliptic integrals of the first kind. An approximate solution based on a direct linearization method is developed alongside this method, and excellent agreement is obtained between the results gained by this method and the exact results. © 1970 Academic Press Inc. (London) Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a recent trend to describe physical phenomena without the use of infinitesimals or infinites. This has been accomplished replacing differential calculus by the finite difference theory. Discrete function theory was first introduced in l94l. This theory is concerned with a study of functions defined on a discrete set of points in the complex plane. The theory was extensively developed for functions defined on a Gaussian lattice. In 1972 a very suitable lattice H: {Ci qmxO,I qnyo), X0) 0, X3) 0, O < q < l, m, n 5 Z} was found and discrete analytic function theory was developed. Very recently some work has been done in discrete monodiffric function theory for functions defined on H. The theory of pseudoanalytic functions is a generalisation of the theory of analytic functions. When the generator becomes the identity, ie., (l, i) the theory of pseudoanalytic functions reduces to the theory of analytic functions. Theugh the theory of pseudoanalytic functions plays an important role in analysis, no discrete theory is available in literature. This thesis is an attempt in that direction. A discrete pseudoanalytic theory is derived for functions defined on H.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese considera a transmissão de conceitos matemáticos para Portugal no século XIX, particularmente no campo dos Integrais Elípticos e das Funções Elípticas, tal como foi realizado no trabalho de António Zeferino Cândido. Depois de uma introdução histórica geral ao assunto no capítulo 1, o capítulo 2 estuda a vida de António Zeferino Cândido da Piedade. Ele foi, talvez, o primeiro matemático português a publicar uma tese sobre este assunto. A parte principal, isto é, o capítulo 3, é dedicada à análise do seu trabalho “Integraes e Funcções Ellipticas”. Mostra detalhes da sua abordagem baseada, não só, no livro dos autores Franceses Briot e Bouquet, mas também do autor alemão Schloemilch, o que reflecte as mudanças que ocorreram naquela época na liderança matemática na Europa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most powerful known primitive in public-key cryptography is undoubtedly elliptic curve pairings. Upon their introduction just over ten years ago the computation of pairings was far too slow for them to be considered a practical option. This resulted in a vast amount of research from many mathematicians and computer scientists around the globe aiming to improve this computation speed. From the use of modern results in algebraic and arithmetic geometry to the application of foundational number theory that dates back to the days of Gauss and Euler, cryptographic pairings have since experienced a great deal of improvement. As a result, what was an extremely expensive computation that took several minutes is now a high-speed operation that takes less than a millisecond. This thesis presents a range of optimisations to the state-of-the-art in cryptographic pairing computation. Both through extending prior techniques, and introducing several novel ideas of our own, our work has contributed to recordbreaking pairing implementations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The module of a quadrilateral is a positive real number which divides quadrilaterals into conformal equivalence classes. This is an introductory text to the module of a quadrilateral with some historical background and some numerical aspects. This work discusses the following topics: 1. Preliminaries 2. The module of a quadrilateral 3. The Schwarz-Christoffel Mapping 4. Symmetry properties of the module 5. Computational results 6. Other numerical methods Appendices include: Numerical evaluation of the elliptic integrals of the first kind. Matlab programs and scripts and possible topics for future research. Numerical results section covers additive quadrilaterals and the module of a quadrilateral under the movement of one of its vertex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend our analysis of transverse single spin asymmetry in electroproduction of J/psi to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q(2) dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend our analysis of transverse single spin asymmetry in electroproduction of J/ψ to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q2 dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.