958 resultados para elliptic curves
Resumo:
This paper improves implementation techniques of Elliptic Curve Cryptography. We introduce new formulae and algorithms for the group law on Jacobi quartic, Jacobi intersection, Edwards, and Hessian curves. The proposed formulae and algorithms can save time in suitable point representations. To support our claims, a cost comparison is made with classic scalar multiplication algorithms using previous and current operation counts. Most notably, the best speeds are obtained from Jacobi quartic curves which provide the fastest timings for most scalar multiplication strategies benefiting from the proposed 12M + 5S + 1D point doubling and 7M + 3S + 1D point addition algorithms. Furthermore, the new addition algorithm provides an efficient way to protect against side channel attacks which are based on simple power analysis (SPA). Keywords: Efficient elliptic curve arithmetic,unified addition, side channel attack.
Resumo:
This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.
Resumo:
Several forms of elliptic curves are suggested for an efficient implementation of Elliptic Curve Cryptography. However, a complete description of the group law has not appeared in the literature for most popular forms. This paper presents group law in affine coordinates for three forms of elliptic curves. With the existence of the proposed affine group laws, stating the projective group law for each form becomes trivial. This work also describes an automated framework for studying elliptic curve group law, which is applied internally when preparing this work.
Resumo:
Let E be an elliptic curve defined over Q and let K/Q be a finite Galois extension with Galois group G. The equivariant Birch-Swinnerton-Dyer conjecture for h(1)(E x(Q) K)(1) viewed as amotive over Q with coefficients in Q[G] relates the twisted L-values associated with E with the arithmetic invariants of the same. In this paper I prescribe an approach to verify this conjecture for a given data. Using this approach, we verify the conjecture for an elliptic curve of conductor 11 and an S-3-extension of Q.
Resumo:
Following the idea of Xing et al., we investigate a general method for constructing families of pseudorandom sequences with low correlation and large linear complexity from elliptic curves over finite fields in this correspondence. With the help of the tool of exponential sums on elliptic curves, we study their periods, linear complexities, linear complexity profiles, distributions of r-patterns, periodic correlation, partial period distributions, and aperiodic correlation in detail. The results show that they have nice randomness.
Resumo:
Communication is the process of transmitting data across channel. Whenever data is transmitted across a channel, errors are likely to occur. Coding theory is a stream of science that deals with finding efficient ways to encode and decode data, so that any likely errors can be detected and corrected. There are many methods to achieve coding and decoding. One among them is Algebraic Geometric Codes that can be constructed from curves. Cryptography is the science ol‘ security of transmitting messages from a sender to a receiver. The objective is to encrypt message in such a way that an eavesdropper would not be able to read it. A eryptosystem is a set of algorithms for encrypting and decrypting for the purpose of the process of encryption and decryption. Public key eryptosystem such as RSA and DSS are traditionally being prel‘en‘ec| for the purpose of secure communication through the channel. llowever Elliptic Curve eryptosystem have become a viable altemative since they provide greater security and also because of their usage of key of smaller length compared to other existing crypto systems. Elliptic curve cryptography is based on group of points on an elliptic curve over a finite field. This thesis deals with Algebraic Geometric codes and their relation to Cryptography using elliptic curves. Here Goppa codes are used and the curves used are elliptic curve over a finite field. We are relating Algebraic Geometric code to Cryptography by developing a cryptographic algorithm, which includes the process of encryption and decryption of messages. We are making use of fundamental properties of Elliptic curve cryptography for generating the algorithm and is used here to relate both.
Resumo:
Let L be a number field and let E/L be an elliptic curve with complex multiplication by the ring of integers O_K of an imaginary quadratic field K. We use class field theory and results of Skorobogatov and Zarhin to compute the transcendental part of the Brauer group of the abelian surface ExE. The results for the odd order torsion also apply to the Brauer group of the K3 surface Kum(ExE). We describe explicitly the elliptic curves E/Q with complex multiplication by O_K such that the Brauer group of ExE contains a transcendental element of odd order. We show that such an element gives rise to a Brauer-Manin obstruction to weak approximation on Kum(ExE), while there is no obstruction coming from the algebraic part of the Brauer group.
Resumo:
Let E/Q be an elliptic curve and p a rational prime of good ordinary reduction. For every imaginary quadratic field K/Q satisfying the Heegner hypothesis for E we have a corresponding line in E(K)\otimes Q_p, known as a shadow line. When E/Q has analytic rank 2 and E/K has analytic rank 3, shadow lines are expected to lie in E(Q)\otimes Qp. If, in addition, p splits in K/Q, then shadow lines can be determined using the anticyclotomic p-adic height pairing. We develop an algorithm to compute anticyclotomic p-adic heights which we then use to provide an algorithm to compute shadow lines. We conclude by illustrating these algorithms in a collection of examples.
Resumo:
In questa tesi si studiano alcune proprietà fondamentali delle funzioni Zeta e L associate ad una curva ellittica. In particolare, si dimostra la razionalità della funzione Zeta e l'ipotesi di Riemann per due famiglie specifiche di curve ellittiche. Si studia poi il problema dell'esistenza di un prolungamento analitico al piano complesso della funzione L di una curva ellittica con moltiplicazione complessa, attraverso l'analisi diretta di due casi particolari.
Resumo:
Fix an isogeny class
Resumo:
Let E be a modular elliptic curve over ℚ, without complex multiplication; let p be a prime number where E has good ordinary reduction; and let F∞ be the field obtained by adjoining to ℚ all p-power division points on E. Write G∞ for the Galois group of F∞ over ℚ. Assume that the complex L-series of E over ℚ does not vanish at s = 1. If p ⩾ 5, we make a precise conjecture about the value of the G∞-Euler characteristic of the Selmer group of E over F∞. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
2000 Mathematics Subject Classification: Primary 34C07, secondary 34C08.