976 resultados para electronic effects
Resumo:
Effects of bromine substitution at the 5 and 5,6-positions of the 1,10-phenanthroline nucleus of BTPhen ligand on their extraction properties for Ln(III) andAn(III) cations have been studied. Compared to C5-BTPhen, electronic modulation in BrC5-BTPhen and Br2C5-BTPhen enabled these ligands to be fine-tuned in order to enhance the separation selectivity of Am(III) from Eu(III)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This thesis concerns the study of complex conformational surfaces and tautomeric equilibria of molecules and molecular complexes by quantum chemical methods and rotational spectroscopy techniques. In particular, the focus of this research is on the effects of substitution and noncovalent interactions in determining the energies and geometries of different conformers, tautomers or molecular complexes. The Free-Jet Absorption Millimeter Wave spectroscopy and the Pulsed-Jet Fourier Transform Microwave spectroscopy have been applied to perform these studies and the obtained results showcase the suitability of these techniques for the study of conformational surfaces and intermolecular interactions. The series of investigations of selected medium-size molecules and complexes have shown how different instrumental setups can be used to obtain a variety of results on molecular properties. The systems studied, include molecules of biological interest such as anethole and molecules of astrophysical interest such as N-methylaminoethanol. Moreover halogenation effects have been investigated on halogen substituted tautomeric systems (5-chlorohydroxypyridine and 6-chlorohydroxypyridine), where it has shown that the position of the inserted halogen atom affects the prototropic equilibrium. As for fluorination effects, interesting results have been achieved investigating some small complexes where a molecule of water is used as a probe to reveal the changes on the electrostatic potential of different fluorinated compounds: 2-fluoropyridine, 3-fluoropyridine and penta-fluoropyridine. While in the case of the molecular complex between water and 2-fluoropyridine and 3-fluoropyridine the geometry of the complex with one water molecule is analogous to that of pyridine with the water molecule linked to the pyridine nitrogen, the case of pentafluoropyridine reveals the effect of perfluorination and the water oxygen points towards the positive center of the pyridine ring. Additional molecular adducts with a molecule of water have been analyzed (benzylamine-water and acrylic acid-water) in order to reveal the stabilizing driving forces that characterize these complexes.
Resumo:
Résumé Les esters sont des agents thérapeutiques largement utilisés comme médicaments et prodrogues. Leurs dégradation est chimique et enzymatique. Le Chapitre IV de cette thèse a comme objet l'hydrolyse chimique de plusieurs dérivés esters du 2,3-dimethoxyphenol. Des composés modèles ont été synthétisés dans le but de déterminer leur mécanismes de dégradation. Les profils d'ionisation et d'hydrolyse de ces composés ont permis d'identifier la présence d'une catalyse intramoléculaire basique par un atome d'azote non-protoné. Les effets électroniques exercés par les groupes phenylethenyle et phenylcyclopropyle influencent également la vitesse d'hydrolyse des esters. La résolution des problèmes liés à l'adsorption et la perméation est devenue à nos jours l'étape limitante dans la conception de nouveaux médicaments car de trop nombreux candidats prometteurs ont échoué à cause d'une mauvaise biodisponibilité. La lipophilie décrit le partage d'un médicament entre une membrane lipidique et son environnement physiologique aqueux, et de ce fait elle influence sa pharmacocinétique. Des études récents ont mis en évidence l'importance de la détermination de la lipophilie des espèces ionisées vu leur considérable impact biologique. Le Chapitre V de cette thèse est centré sur une classe particulière de composés ionisables, les zwitterions. Plusieurs methoxybenzylpiperazines de nature zwitterionique ont été étudiées. Leurs profils d'ionisation ont montré que dans un large intervalle de pH, l'espèce prédominante est le zwitterion. Les profils de lipophilie ont montré que leur lipophilie est plus élevée que celles des zwitterions courants. Une interaction électrostatique entre l'oxygène du carboxylate et l'azote protoné est responsable de ce profil et rend la plupart des zwitterions non-donneurs de liaison hydrogène. Ces deux aspects peuvent favoriser le passage de la barrière hémato-éncephalique. Les données biologiques ont par la suite confirmé cette hypothèse pour un certain nombre de composés. Résumé large public Les esters sont des composés souvent rencontrés en chimie thérapeutique. Ils sont dégradés en milieu aqueux par une réaction d'hydrolyse, avec ou sans la participation d'enzymes. Dans ce travail de thèse, une série d'esters ont été étudiés dans le but d'établir une relation entre leur structure et les mécanismes responsables de leur dégradation chimique. Il a été prouvé que la dégradation est accélérée par un atome d'azote non-protoné. D'autres mécanismes peuvent intervenir en fonction du pH du milieu. La présence d'une liaison simple ou double ou d'un groupe phenylcyclopropyle peut également influencer la vitesse de dégradation. Il est essentiel, dans la conception de nouveaux médicaments, d'optimiser les étapes qui influencent leur distribution dans le corps. Ce dernier peut être visualisé comme une série infinie de compartiments aqueux séparés par des membranes lipidiques. La lipophilie est une propriété moléculaire importante qui décrit le passage des barrières rencontrées par les médicaments. Des études récentes ont mis en évidence l'importance de déterminer la lipophilie des espèces ionisées vu leur considérable impact biologique. Dans ce travail de thèse a été étudiée une série particulière de composés ionisables , les zwitterions. Une relation a été établie entre leur structure et leur proprietés physico-chimiques. Une lipophilie plus élevée par rapport à celle des zwitterions courants a été trouvée. Une interaction entre les groupes chargés des zwitterions étudiés est responsable de ce comportement inattendu et rend la plupart d'entre eux non-donneurs de liaison hydrogène. Ces deux facteurs peuvent favoriser la pénétration cérébrale. Les données biologiques ont confirmé cette hypothèse pour un certain nombre de composés. Summary Esters are often encountered in medicinal chemistry. Their hydrolysis may be chemical as well as enzymatic. Chapter IV of this manuscript provides a mechanistic insight into the chemical hydrolysis of a particular series of basic esters derived from 2,3-dimethoxyphenol. Their ionization and pH-rate profiles allowed to identify the presence of an intramolecular base catalysis by a non-protonated nitrogen atom. Electronic effects exerted by the phenylethenyl and phenylcyclopropyl groups that are present in the structure of the esters also influenced their rate of hydrolysis. Numerous works in the literature witness of the importance of lipophilicity in determining the fate of a drug. Most published partition coefficients are those of neutral species. In contrast, no exhaustive treatment of the lipophilicity of charged molecules is available at present, and a lack of information characterizes in particular zwitterions. Chapter V of this manuscript provides an insight into the physicochemical parameters of a series of zwitterionic methoxybenzylpiperazines. Their ionization profiles showed that they exist predominantly in the zwitterionic form in a broad pH-range. An electrostatic interaction between the oxygen of the carboxylate and the protonated nitrogen atom is increases the lipophilicity of the investigated zwitterions, and prevents the majority of them to express their hydrogen-bonding capacity. These two aspects may favor the crossing of the blood-brain barrier. The available ratios PSt/PSf measured in vitro have confirmed this point for a number of compounds.
Resumo:
Despite the fact that boranes are frequently used in amide reductions, the reaction mechanisms of the involved are note well known. This work presents the results of a bibliographic search on probable amide reduction mechanisms and an analysis of the existing literature. Steric and electronic effects were considered in light of reactivity since it could be concluded that the formation of intermediates and products depends mainly on the substitution patterns of both the boron and nitrogen atoms. Otherwise, results described in the literature for the reactions of boranes, sodium borohydride, lithium aluminum hydride, alkylboranes or haloboranes with others functional groups such as carboxylic acids, esters, ketones and alkenes were analysed with the aim to obtain something about the N-substituted amide reactions employing boranes.
Resumo:
A series of Group VIII metal catalysts was obtained for the semi-hydrogenation of styrene. Catalysts were characterized by Hydrogen Chemisorption, TPR and XPS. Palladium, rhodium and platinum low metal loading prepared catalysts presented high activity and selectivity (ca. 98%) during the semi-hydrogenation of styrene, being palladium the most active catalyst. The ruthenium catalyst also presented high selectivity (ca. 98%), but the lowest activity. For the palladium catalyst, the influence of the precursor salt and of the reduction temperature on the activity and selectivity were studied. The following activity series was obtained: PdN-423 > PdCl-673 > PdCl-373> PtCl-673 > RhCl-673 >> RuCl-673. As determined by XPS, differences in activity could be attributed, at least in part, to electronic effects.
Resumo:
Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.
Resumo:
The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.
Resumo:
In the present work, we have investigated the nonlinear optical properties of self-assembled films formed from ZnO colloidal spheres by z-scan technique. The sign of the nonlinear component of refractive index of the material remains the same; however, a switching from reverse saturable absorption to saturable absorption has been observed as the material changes from colloid to self-assembled film. These different nonlinear characteristics can be mainly attributed to ZnO defect states and electronic effects when the colloidal solution is transformed into self-assembled monolayers. We investigated the intensity, wavelength and size dependence of saturable and reverse saturable absorption of ZnO self-assembled films and colloids. Values of the imaginary part of third-order susceptibility are calculated for particles of size in the range 20–300 nm at different intensity levels ranging from 40 to 325MW/cm2 within the wavelength range of 450–650 nm.
Resumo:
Rare earth metal ion exchanged (La3+, Ce3+, RE3+) KFAU-Y zeolites were prepared by simple ion-exchange methods and have been characterized using different physico-chemical techniques. In this paper a novel application of solid acid catalysts in the dehydration/ Beckmann rearrangement of aldoximes; benzaldoxime and 4-methoxybenzaldoxime is reported. Dehydration/Beckmann rearrangement reactions of benzaldoxime and 4-methoxybenzaldoxime is carried out in a continuous down flow reactor at 473K. 4-Methoxybenzaldoxime gave both Beckmann rearrangement product (4-methoxyphenylformamide) and dehydration product (4-methoxybenzonitrile) in high overall yields. The difference in behavior of the aldoximes is explained in terms of electronic effects. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream studies show a fast decline in the activity of the catalyst due to neutralization of acid sites by the basic reactant and product molecules.
Can mass dissociation patterns of transition-metal complexes be predicted from electrochemical data?
Resumo:
The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (mu(3)-O)(mu-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever`s E(L) parameters. In fact, excellent linear correlations of In(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Titanocenos são catalisadores solúveis conhecidos para a polimerisação estereoespecífica de olefinas pró-quirais como o estireno. Nesse trabalho descrevemos as relações entre as características do poliestireno e a estrutura do precursor do catalisador, de fato aqueles da família (RCp)2TiCl2 (R = H, etila, iso-propila, n-propila, sec-butila, n-butila, iso-amila e ciclohexila). Todos os catalisadores são ativos para a produção de poliestireno acima de zero graus centígrados. A sindiotaticidade dos polímeros são dependentes da cadeia lateral dos anéis aromáticos do titanoceno e da temperatura da polimerização. A relação entre os fatores estéricos e eletrônicos do precursor do catalisador e os produtos de polimerização são apresentados e discutidos.
Resumo:
A novel supermolecule constituted by four mu(3)-oxo-triruthenium acetate clusters coordinated to manganese(III)-meso -tetra(4-pyridil)porphyrin acetate ([MnTPyP]CH3COO) has been synthesized. Characterization has been performed by UV-Vis and H-1 NMR spectroscopy. The electrochemical behavior (cyclic voltammetry and spectroelectrochemistry) in N,N'-dimethylformamide has been analyzed in terms of five redox processes: three related to peripheral clusters (Ru-IV,Ru-III,Ru-III/Ru-III,Ru-III,Ru-III/Ru-III,Ru-II,Ru-II) and two centered on the Mn-porphyrin core ((MnP)-P-III/(MnP)-P-II/(MnP2-)-P-II). A direct comparison has been performed between MnTCP and MnTPyP as catalysts for the cyclooctene and cyclohexane oxidation reactions. The improved selectivity exhibited by the supramolecular catalyst for cyclohexane oxidation has been ascribed to electronic effects on the oxomanganese(V) porphyrin species induced by the four peripheral clusters, in the formal (RuRuRuIII)-Ru-IV-Ru-III oxidation state. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
Métodos quimiométricos (estatísticos) são empregados para classificar um conjunto de compostos derivados de neolignanas com atividade biológica contra a Paracoccidioides brasiliensis. O método AM1 (Austin Model 1) foi utilizado para calcular um conjunto de descritores moleculares (propriedades) para os compostos em estudo. A seguir, os descritores foram analisados utilizando os seguintes métodos de reconhecimento de padrões: Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos (HCA) e o método de K-vizinhos mais próximos (KNN). Os métodos PCA e HCA mostraram-se bastante eficientes para classificação dos compostos estudados em dois grupos (ativos e inativos). Três descritores moleculares foram responsáveis pela separação entre os compostos ativos e inativos: energia do orbital molecular mais alto ocupado (EHOMO), ordem de ligação entre os átomos C1'-R7 (L14) e ordem de ligação entre os átomos C5'-R6 (L22). Como as variáveis responsáveis pela separação entre compostos ativos e inativos são descritores eletrônicos, conclui-se que efeitos eletrônicos podem desempenhar um importante papel na interação entre receptor biológico e compostos derivados de neolignanas com atividade contra a Paracoccidioides brasiliensis.