974 resultados para electron, bound-state QED, g-factor, field emission point arrays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Entwicklung und dem Aufbau eines Experiments zur hochpräzisen Bestimmung des g-Faktors gebundener Elektronen in hochgeladenen Ionen. Der g-Faktor eines Teilchens ist eine dimensionslose Konstante, die die Stärke der Wechselwirkung mit einem magnetischen Feld beschreibt. Im Falle eines an ein hochgeladenes Ion gebundenen Elektrons, dient es als einer der genausten Tests der Quantenelektrodynamik gebundener Zustande (BS-QED). Die Messung wird in einem dreifach Penning-Fallen System durchgeführt und basiert auf dem kontinuierlichen Stern-Gerlach-Effekt. Der erste Teil dieser Arbeit gibt den aktuellen Wissensstand über magnetische Momente wieder. Der hier gewählte experimentelle Aufbau wird begründet. Anschließend werden die experimentellen Anforderungen und die verwendeten Messtechniken erläutert. Das Ladungsbrüten der Ionen - einer der wichtigsten Aufgaben dieser Arbeit - ist dargestellt. Seine Realisierung basiert auf einer Feld-Emissions-Spitzen-Anordnung, die die Messung des Wirkungsquerschnitts für Elektronenstoßionisation ermöglicht. Der letzte Teil der Arbeit widmet sich der Entwicklung und dem Aufbau des Penning-Fallen Systems, sowie der Implementierung des Nachweisprozesses. Gegenwärtig ist der Aufbau zur Erzeugung hochgeladener Ionen und der dazugehörigen Messung des g-Faktors abgeschlossen, einschließlich des Steuerprogramms für die erste Datennahme. Die Ionenerzeugung und das Ladungsbrüten werden die nächsten Schritte sein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28Si13+. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision.rnThe development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 40 ppt, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k center dot p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article quantifies the effect of the operating pressure of the H 2 + C 2H 4 gas mixture on the current density and threshold voltage of the electron emission from dense forests of multiwalled carbon nanotubes synthesized using thermal catalytic Chemical Vapor Deposition under near atmospheric pressure process conditions. The results suggest that in the pressure range of interest 400-700 Torr the field emission properties can be substantially improved by operating the process at lower gas pressures when the nanostructure aspect ratios are higher. The obtained threshold voltage ∼1.75 V/μm and the emission current densities ∼10 mA/cm 2 offer competitive advantages compared with the results reported by other authors. Copyright

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field emission of reduced graphene oxide coated on polystyrene film is studied in both parallel and perpendicular configurations. Low turn-on field of 0.6 V/lm and high emission current density of 200 mA/cm(2) are observed in perpendicular configuration (along the cross section), whereas a turn-on field of 6 V/lm and current density of 20 mu A/cm(2) are obtained in parallel configuration (top surface). The emission characteristics follow Fowler-Nordheim (FN) tunneling and the values of enhancement factor estimated from FN plots are 5818 (perpendicular) and 741 (parallel). Furthermore, stability and repeatability of the field emission characteristics in perpendicular configuration are presented. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4788738]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enhanced emission performance of a graphene/Mo hybrid gate electrode integrated into a nanocarbon field emission micro-triode electron source is presented. Highly electron transparent gate electrodes are fabricated from chemical vapor deposited bilayer graphene transferred to Mo grids with experimental and simulated data, showing that liberated electrons efficiently traverse multi-layer graphene membranes with transparencies in excess of 50-68%. The graphene hybrid gates are shown to reduce the gate driving voltage by 1.1 kV, whilst increasing the electron transmission efficiency of the gate electrode significantly. Integrated intensity maps show that the electron beam angular dispersion is dramatically improved (87.9°) coupled with a 63% reduction in beam diameter. Impressive temporal stability is noted (<1.0%) with surprising negligible long-term damage to the graphene. A 34% increase in triode perveance and an amplification factor 7.6 times that of conventional refractory metal grid gate electrode-based triodes are noted, thus demonstrating the excellent stability and suitability of graphene gates in micro-triode electron sources. A nanocarbon field emission triode with a hybrid gate electrode is developed. The graphene/Mo gate shows a high electron transparency (50-68%) which results in a reduced turn-on potential, increased beam collimation, reduced beam diameter (63%), enhanced stability (<1% variation), a 34% increase in perveance, and an amplification 7.6 times that of equivalent conventional refractory metal gate triodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Tm3+-doped La2O3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy, photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. Under the excitation of UV light (234 nm) and low-voltage electron beams (1-3 kV), the Tm3+-doped La2O3 phosphors show the characteristic emissions of Tm3+(D-1(2), (1)G(4)-F-3(4), H-3(6) transitions).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. XRD results reveal that the pure LaInO3 phase can also be obtained at 700 degrees C. FE-SEM images indicate that the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors are composed of aggregated spherical particles with sizes around 80-120 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors show the characteristic emissions of Sm3+ ((4)G(5/2)-H-6(5/2,7/2,9/2) transitions, yellow), Pr3+ (P-3(0)-H-3(4), P-3(1)-H-3(5), D-1(2)-H-3(4) and P-3(0)-F-3(2) transitions, blue-green) and Tb3+ (D-5(4)-F-7(6.5,4.3) transitions, green) respectively. The corresponding luminescence mechanisms are discussed. These phosphors have potential applications in field emission displays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field, emission tip by backstreaming ions. (C) 2008 American Institute of Physics.