998 resultados para electroanalytical method
Resumo:
The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.
Resumo:
Several colorimetric and chromatographic methods have been used for the identification and quantification of methyldopa (MA) in pharmaceutical formulations and clinical samples. However, these methods are time- and reagent-consuming, which stimulated our efforts to develop a simple, fast, and low-cost alternative method. We carried out an electroanalytical method for the determination of MA in pharmaceutical formulations using the crude enzymatic extract of laccase from Pycnoporus sanguineus as oxidizing agent. This method is based on the biochemical oxidation of MA by laccase (LAC), both in solution, followed by electrochemical reduction on glassy carbon electrode surface. This method was employed for the determination of MA in pure and pharmaceutical formulations and compared with the results obtained using the official method. A wide linear curve from 23 x 10(-5) to 1 x 10(-4) mol L(-1) was found with a detection limit calculated from 43 x 10(-6) mol L(-1).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A poly glutamic acid film modified electrode exhibited a catalytic response toguanosine oxidation potential and higher peak current value. Linear concentration curve was obtained in the concentration interval of 1.0 a 10.0 μmol L-1 in 0.04 mol L-1 B-R buffer pH 2.0 with a detection limit of 0.198 μmol L-1. The electrode was used for the determination of guanosine in the potential of +1.1 V (vs. Ag/AgCl) using differential pulse voltammetry (DPV) at urine sample with good recovery. © 2010 by CEE.
Resumo:
The aim of this study is to develop a new enzymeless electroanalytical method for the indirect quantification of creatinine from urine sample. This method is based on the electrochemical monitoring of picrate anion reduction at a glassy carbon electrode in an alkaline medium before and after it has reacted with creatinine (Jaffe's reaction). By using the differential pulse voltammetry technique under the optimum experimental conditions (step potential, amplitude potential, reaction time, and temperature), a linear analytical curve was obtained for concentrations of creatinine ranging from 1 to 80 mu mol L-1, with a detection limit of 380 nmol L-1. This proposed method was used to measure creatinine in human urine without the interference of most common organic species normally present in biological fluids (e.g., uric acid, ascorbic acid, glucose, and phosphocreatinine). The results obtained using urine samples were highly similar to the results obtained using the reference spectrophotometric method (at a 95% confidence level). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work presents an electroanalytical method based on square-wave voltammetry (SWV) for the determination of quinizarine (QNZ) in a mixture of Britton-Robinson buffer 0.08 mol L-1 with 30% of acetonitrile. The QNZ was oxidized at glassy carbon electrode in and the well-defined peak at +0.45 V vs. Ag/AgCl can be used for its determination as colour marker in fuel samples. All parameters were optimized and analytical curves can be constructed for QNZ concentrations ranging from 2.0 x 10(-6) mol L-1 to 1.4 x 10(-5) mol L-1, using f = 60 Hz and E-sw = 25 mV. The method offers a limit detection of 4.12 x 10(-7) mol L-1 and a standard deviation of 4.5% when six measurements of 1.25 x 10(-5) mol L-1 are compared. The method was successfully applied for determining QNZ in gasoline and diesel oil and the obtained results showed good agreement with those reported previously. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L - 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L - 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaca) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L-1 for lead and copper. The limits of detection were 48.5 and 23.9 mu g L-1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L- 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L- 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
The electrochemical behaviour of propanil and related N-substituted amides (acetanilide and N,N-diphenylacetamide) was studied by cyclic and square wave voltammetry using a glassy carbon electrode. Propanil has been found to have chemical stability under the established analytical conditions and showed an oxidation peak at +1.27V versus Ag/AgCl at pH 7.5. N,N-diphenylacetamide has a higher oxidation potential than the other compounds of +1.49V versus Ag/AgCl. Acetanilide oxidation occurred at a potential similar to that of propanil, +1.24V versus Ag/AgCl. These results are in agreement with the substitution pattern of the nitrogen atom of the amide. A degradation product of propanil, 3,4-dichloroaniline (DCA), was also studied, and showed an oxidation peak at +0.66V versus Ag/AgCl. A simple and specific quantitative electroanalytical method is described for the analysis of propanil in commercial products that contain propanil as the active ingredient, used in the treatment of rice crops in Portugal.
Resumo:
The development of more selective and sensitive analytical methods is of great importance in different areas of knowledge, covering, for example, food, biotechnological, environmental and pharmaceutical sectors. The study aimed to employ the technique electroanalytical differential pulse voltammetry (DPV) as an innovative and promising alternative for identification and quantification of organic compounds. The organic compounds were investigated in this study oxalic acid (OA) and folic acid (FA). The electrochemical oxidation of oxalic acid has been extensively studied as a model reaction in the boundary between the organic and inorganic electrochemistry. Since the AF, an essential vitamin for cell multiplication in all tissues, which is essential for DNA synthesis. The AF has been investigated using analytical techniques, liquid chromatography and molecular absorption spectrophotometry. The results obtained during the experimental procedure indicated that the process of electrochemical oxidation of oxalic acid is strongly dependent on the nature of the anode material and the oxidation mechanism, which affects their detection. Efficient removal was observed in Ti/PbO2 anodes, graphite, BDD and Pt 90, 85, 80 and 78% respectively. It was also shown that the DPV employing glassy carbon electrode offers a fast, simple, reliable and economical way to determine the AO during the process of electrochemical oxidation. Furthermore, electroanalytical methods are more expensive than commonly used chromatographic analysis and other instrumental methods involving toxic reagents and higher cost. Compared with the classical method of titration and DPV could be a good fit, confidence intervals and detection limits confirming the applicability of electroanalytical technique for monitoring the degradation of oxalic acid. For the study of AF was investigated the electrocatalytic activity of the carbon paste electrode for identification and quantification in pharmaceutical formulations by applying the DPV. The results obtained during the experimental procedure showed an irreversible oxidation peak at 9.1 V characteristic of FA. The carbon paste sensor showed low detection limit of 5.683×10−8 mol L-1 reducing matrix effects. The spectrophotometric analysis showed lower concentrations of HF compared with those obtained by HPLC and DPV. The levels of AF were obtained according to the methodology proposed by the Brazilian Pharmacopoeia. The electroanalytical method (DPV) proposed is cheaper than GC analysis commonly used by the pharmaceutical industry. The results demonstrated the potential of these electroanalytical techniques for future applications in environmental, chemical and biological sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen-printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at -1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at -0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, -1.5 V (vs. printed carbon) accumulation potential, 100 mV s(-1) scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L-1 from 1.43 x 10(-6) to 1.55 x 10(-4) mol L-1. A limit of detection obtained was 6.50 x 10(-7) mol L-1, and the relative standard deviation from five measurements of 3.0 x 10(-5) mol L-1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.
Resumo:
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HCl and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators. (c) 2006 Elsevier B.V. All rights reserved.